語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamic Structural Equation Modeling with Gaussian Processes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dynamic Structural Equation Modeling with Gaussian Processes.
作者:
Ziedzor, Reginald.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, 2022
面頁冊數:
127 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
附註:
Advisor: Koran, Jennifer.
Contained By:
Dissertations Abstracts International83-12B.
標題:
Social sciences education.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764
ISBN:
9798819388464
Dynamic Structural Equation Modeling with Gaussian Processes.
Ziedzor, Reginald.
Dynamic Structural Equation Modeling with Gaussian Processes.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 127 p.
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
This item must not be sold to any third party vendors.
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
ISBN: 9798819388464Subjects--Topical Terms:
942384
Social sciences education.
Subjects--Index Terms:
Bayesian analysis
Dynamic Structural Equation Modeling with Gaussian Processes.
LDR
:02303nmm a2200385 4500
001
636090
005
20230501063856.5
006
m o d
007
cr#unu||||||||
008
230724s2022 ||||||||||||||||| ||eng d
020
$a
9798819388464
035
$a
(MiAaPQ)AAI29064764
035
$a
AAI29064764
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ziedzor, Reginald.
$3
942382
245
1 0
$a
Dynamic Structural Equation Modeling with Gaussian Processes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
127 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-12, Section: B.
500
$a
Advisor: Koran, Jennifer.
502
$a
Thesis (Ph.D.)--Southern Illinois University at Carbondale, 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
The dynamic structural equation modeling (DSEM) framework incorporates hierarchical latent modeling (HLM), structural equation modeling (SEM), time series analysis (TSA), and time-varying effects modeling (TVEM) to model the dynamic relationship between latent and observed variables. To model the functional relationships between variables, a Gaussian process (GP), by definition of its covariance function(s), allows researchers to define Gaussian distributions over functions of input variables. Therefore, by incorporating GPs to model the presence of significant trend in either latent or observed variables, this dissertation explores the adequacy and performance of GPs in manipulated conditions of sample size using the flexible Bayesian analysis approach. The overall results of these Monte Carlo simulation studies showcase the ability of the multi-output GPs to properly explore the presence of trends. Also, in modeling intensive longitudinal data, GPs can be specified to properly account for trends, without generating significantly biased and imprecise estimates.
590
$a
School code: 0209.
650
4
$a
Social sciences education.
$3
942384
650
4
$a
Social studies education.
$3
942385
650
4
$a
Educational psychology.
$3
181151
650
4
$a
Quantitative psychology.
$3
708538
653
$a
Bayesian analysis
653
$a
Dynamic structural equation modeling
653
$a
Gaussian process
653
$a
Intensive longitudinal data
690
$a
0534
690
$a
0632
690
$a
0525
710
2
$a
Southern Illinois University at Carbondale.
$b
Quantitative Methods.
$3
942383
773
0
$t
Dissertations Abstracts International
$g
83-12B.
790
$a
0209
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000222994
電子館藏
1圖書
電子書
EB 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29064764
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入