語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Building an Optimized Stock Portfolio Using Machine Learning Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Building an Optimized Stock Portfolio Using Machine Learning Models.
作者:
Jones, Kayla Michelle.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, 2023
面頁冊數:
86 p.
附註:
Source: Masters Abstracts International, Volume: 84-11.
附註:
Advisor: Chowdhury, Abhinandan;Dolo, Samuel.
Contained By:
Masters Abstracts International84-11.
標題:
Applied mathematics.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30426086
ISBN:
9798379513153
Building an Optimized Stock Portfolio Using Machine Learning Models.
Jones, Kayla Michelle.
Building an Optimized Stock Portfolio Using Machine Learning Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 86 p.
Source: Masters Abstracts International, Volume: 84-11.
Thesis (M.S.Math)--Savannah State University, 2023.
This item must not be sold to any third party vendors.
This research aims to analyze more than 500 public stock market companies and their prices to identify the most profitable sectors from three major stock market indices, Nasdaq-100, Dow Jones, and the S&P 500. We developed four regression models and trained them to predict the price of a stock, forecast the future price, and generate optimized stock portfolios based on one's budget. We then measured the performance and accuracy of each prediction and forecast by calculating . To measure the profitabilityof each portfolio, we calculated the expected return, volatility, and Sharpe ratio to determine if they would outperform the S&P 500 Index over a 10-year period. Our best performing model belongs to the Polynomial Regression Model which has an expected portfolio return of 22.9%, volatility of 14.27%, and Sharpe ratio of 1.069. Lastly, this paper analyzes which sector is the most profitable based on our machine learning models. 
ISBN: 9798379513153Subjects--Topical Terms:
377601
Applied mathematics.
Subjects--Index Terms:
Deep learning
Building an Optimized Stock Portfolio Using Machine Learning Models.
LDR
:02175nmm a2200409 4500
001
655759
005
20240414211923.5
006
m o d
007
cr#unu||||||||
008
240620s2023 ||||||||||||||||| ||eng d
020
$a
9798379513153
035
$a
(MiAaPQ)AAI30426086
035
$a
AAI30426086
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jones, Kayla Michelle.
$3
966825
245
1 0
$a
Building an Optimized Stock Portfolio Using Machine Learning Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
86 p.
500
$a
Source: Masters Abstracts International, Volume: 84-11.
500
$a
Advisor: Chowdhury, Abhinandan;Dolo, Samuel.
502
$a
Thesis (M.S.Math)--Savannah State University, 2023.
506
$a
This item must not be sold to any third party vendors.
520
$a
This research aims to analyze more than 500 public stock market companies and their prices to identify the most profitable sectors from three major stock market indices, Nasdaq-100, Dow Jones, and the S&P 500. We developed four regression models and trained them to predict the price of a stock, forecast the future price, and generate optimized stock portfolios based on one's budget. We then measured the performance and accuracy of each prediction and forecast by calculating . To measure the profitabilityof each portfolio, we calculated the expected return, volatility, and Sharpe ratio to determine if they would outperform the S&P 500 Index over a 10-year period. Our best performing model belongs to the Polynomial Regression Model which has an expected portfolio return of 22.9%, volatility of 14.27%, and Sharpe ratio of 1.069. Lastly, this paper analyzes which sector is the most profitable based on our machine learning models. 
590
$a
School code: 1686.
650
4
$a
Applied mathematics.
$3
377601
650
4
$a
Finance.
$3
183252
650
4
$a
Computer science.
$3
199325
653
$a
Deep learning
653
$a
Machine learning
653
$a
Regression models
653
$a
Portfolio optimization
653
$a
Stocks
690
$a
0364
690
$a
0508
690
$a
0984
690
$a
0800
710
2
$a
Savannah State University.
$b
Mathematics.
$3
966826
773
0
$t
Masters Abstracts International
$g
84-11.
790
$a
1686
791
$a
M.S.Math
792
$a
2023
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30426086
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000236774
電子館藏
1圖書
學位論文
TH 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30426086
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入