語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning for Financial Market Forecasting.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning for Financial Market Forecasting.
作者:
Johnson, Jaya.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, 2023
面頁冊數:
104 p.
附註:
Source: Masters Abstracts International, Volume: 84-11.
附註:
Advisor: Wang, Hongming.
Contained By:
Masters Abstracts International84-11.
標題:
Computer science.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486584
ISBN:
9798379491109
Machine Learning for Financial Market Forecasting.
Johnson, Jaya.
Machine Learning for Financial Market Forecasting.
- Ann Arbor : ProQuest Dissertations & Theses, 2023 - 104 p.
Source: Masters Abstracts International, Volume: 84-11.
Thesis (A.L.M.)--Harvard University, 2023.
This item must not be sold to any third party vendors.
Stock market forecasting continues to be an active area of research. In recent years machine learning algorithms have been applied to achieve better predictions. Using natural language processing (NLP), contextual information from unstructured data including news feeds, analysts calls and other online content have been used as indicators to improve prediction rates. In this work we compare traditional machine learning methods with more recent ones, including LSTM and FinBERT to assess improvements, challenges and future directions.
ISBN: 9798379491109Subjects--Topical Terms:
199325
Computer science.
Subjects--Index Terms:
Stock market forecasting
Machine Learning for Financial Market Forecasting.
LDR
:01768nmm a2200409 4500
001
655764
005
20240414211924.5
006
m o d
007
cr#unu||||||||
008
240620s2023 ||||||||||||||||| ||eng d
020
$a
9798379491109
035
$a
(MiAaPQ)AAI30486584
035
$a
AAI30486584
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Johnson, Jaya.
$3
966836
245
1 0
$a
Machine Learning for Financial Market Forecasting.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2023
300
$a
104 p.
500
$a
Source: Masters Abstracts International, Volume: 84-11.
500
$a
Advisor: Wang, Hongming.
502
$a
Thesis (A.L.M.)--Harvard University, 2023.
506
$a
This item must not be sold to any third party vendors.
520
$a
Stock market forecasting continues to be an active area of research. In recent years machine learning algorithms have been applied to achieve better predictions. Using natural language processing (NLP), contextual information from unstructured data including news feeds, analysts calls and other online content have been used as indicators to improve prediction rates. In this work we compare traditional machine learning methods with more recent ones, including LSTM and FinBERT to assess improvements, challenges and future directions.
590
$a
School code: 0084.
650
4
$a
Computer science.
$3
199325
650
4
$a
Finance.
$3
183252
653
$a
Stock market forecasting
653
$a
FinBERT
653
$a
Long short term memory
653
$a
Natural language processing
653
$a
Recurrent neural networks
653
$a
Support vector machine
690
$a
0984
690
$a
0508
690
$a
0800
710
2
$a
Harvard University.
$b
Extension Studies.
$3
966837
773
0
$t
Masters Abstracts International
$g
84-11.
790
$a
0084
791
$a
A.L.M.
792
$a
2023
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486584
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000236779
電子館藏
1圖書
學位論文
TH 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=30486584
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入