語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Loss functions for binary classifica...
~
Shen, Yi.
Loss functions for binary classification and class probability estimation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Loss functions for binary classification and class probability estimation.
作者:
Shen, Yi.
面頁冊數:
115 p.
附註:
Source: Dissertation Abstracts International, Volume: 66-06, Section: B, page: 3215.
附註:
Supervisor: Andreas Buja.
Contained By:
Dissertation Abstracts International66-06B.
標題:
Statistics.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3179814
ISBN:
0542200554
Loss functions for binary classification and class probability estimation.
Shen, Yi.
Loss functions for binary classification and class probability estimation.
- 115 p.
Source: Dissertation Abstracts International, Volume: 66-06, Section: B, page: 3215.
Thesis (Ph.D.)--University of Pennsylvania, 2005.
Proper scoring rules are fully characterized by weight functions o(eta) on class probabilities eta = P[Y = 1]. These weight functions give immediate practical insight into loss functions: high mass of o(eta) points to the class probabilities eta where the proper scoring rule strives for greatest accuracy. For example, both log-loss and boosting loss have poles near zero and one, hence rely on extreme probabilities.
ISBN: 0542200554Subjects--Topical Terms:
182057
Statistics.
Loss functions for binary classification and class probability estimation.
LDR
:02767nmm _2200289 _450
001
167421
005
20061005085933.5
008
090528s2005 eng d
020
$a
0542200554
035
$a
00198037
040
$a
UnM
$c
UnM
100
0
$a
Shen, Yi.
$3
237569
245
1 0
$a
Loss functions for binary classification and class probability estimation.
300
$a
115 p.
500
$a
Source: Dissertation Abstracts International, Volume: 66-06, Section: B, page: 3215.
500
$a
Supervisor: Andreas Buja.
502
$a
Thesis (Ph.D.)--University of Pennsylvania, 2005.
520
#
$a
Proper scoring rules are fully characterized by weight functions o(eta) on class probabilities eta = P[Y = 1]. These weight functions give immediate practical insight into loss functions: high mass of o(eta) points to the class probabilities eta where the proper scoring rule strives for greatest accuracy. For example, both log-loss and boosting loss have poles near zero and one, hence rely on extreme probabilities.
520
#
$a
We illustrate "tailoring" with artificial and real datasets both for linear models and for non-parametric models based on trees, and compare it with traditional linear logistic regression and one recent version of boosting, called "LogitBoost".
520
#
$a
We show that the freedom of choice among proper scoring rules can be exploited ploited when the two types of misclassification have different costs: one can choose proper scoring rules that focus on the cost c of class 0 misclassification by concentrating o(eta) near c. We also show that cost-weighting uncalibrated loss functions can achieve tailoring. "Tailoring" is often beneficial for classical linear models, whereas non-parametric boosting models show fewer benefits.
520
#
$a
What are the natural loss functions for binary class probability estimation? This question has a simple answer: so-called "proper scoring rules". These loss functions, known from subjective probability, measure the discrepancy between true probabilities and estimates thereof. They comprise all commonly used loss functions: lob loss, squared error loss, boosting loss (which we derive from boosting's exponential loss), and cost-weighted misclassification losses. We also introduce a larger class of possibly uncalibrated loss functions that can be calibrated with a link function. An example is exponential loss, which is related to boosting.
590
$a
School code: 0175.
650
# 0
$a
Statistics.
$3
182057
690
$a
0463
710
0 #
$a
University of Pennsylvania.
$3
212781
773
0 #
$g
66-06B.
$t
Dissertation Abstracts International
790
$a
0175
790
1 0
$a
Buja, Andreas,
$e
advisor
791
$a
Ph.D.
792
$a
2005
856
4 0
$u
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3179814
$z
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3179814
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000002359
電子館藏
1圖書
學位論文
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3179814
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入