類神經網路與圖型分析於晶圓製程之良率預測 = Apply Artific...
國立高雄大學亞太工商管理學系碩士班

 

  • 類神經網路與圖型分析於晶圓製程之良率預測 = Apply Artificial Neural Network and Pattern Analysis to Yield Prediction in Wafer Manufacturing Processes
  • Record Type: Language materials, printed : monographic
    Paralel Title: Apply Artificial Neural Network and Pattern Analysis to Yield Prediction in Wafer Manufacturing Processes
    Author: 許光明,
    Secondary Intellectual Responsibility: 國立高雄大學
    Place of Publication: [高雄市]
    Published: 撰者;
    Year of Publication: 民99[2010]
    Description: 63面圖,表 : 30公分;
    Subject: 良率模式
    Subject: yield model
    Online resource: http://handle.ncl.edu.tw/11296/ndltd/46697382272572595975
    Summary: 在傳統良率模式中,必須事先假設缺陷密度函數才能進行良率的估計,但是在實際狀況下卻無法精準地以某一個分配完全描述缺陷密度,而且在出現群聚現象時可能會錯估良率。近代有學者提出以一些無須假設缺陷密度函數之數學模式取代傳統之良率模式,在這些模式中輸入參數的選擇就顯得相當重要,必須盡可能包含所有晶圓上之變異因素,其中群聚現象之因素通常以群聚指標加以描述,但某些特定的群聚圖型卻會使群聚指標產生誤判群聚程度的狀況而造成良率估計誤差變大。有鑑於此,本研究透過三道圖型特性分析將晶圓上之缺陷圖型分類成隨機分佈、區域集中分佈、直線分佈與環狀分佈等四種,接著將群聚圖型也納入與群聚指標共同描述群聚現象。最後比較只使用群聚指標描述群聚現象之模式與使用群聚指標及群聚圖型描述群聚現象之模式。研究結果顯示,在增加了群聚圖型參數的良率模式中所估計的良率確實比未加入群聚圖型參數的良率模式更接近實際良率。 In traditional wafer-yield models, it is assumed that the defect density on a wafer follows a pre-specified distribution beforehand. However, when the defects present the so-called "cluster phenomenon", it is impractical to use a single specific distribution to fit the defect density. Hence, previous work proposed some contemporary models as alternatives to the traditional ones. In con-temporary models, two important issues are: (1) the input parameters should include all of the process variations and (2) the similarity among parameters is minimized. Especially, the distribution of defect density is excluded from the input parameters. Furthermore, some cluster indices have been derived to present cluster phenomenon. However, cluster indices may incorrectly assess some special defect patterns. Hence, there is a need to devise a more adaptive procedure to predict the wafer yield. Towards this end, this research examines the effectiveness of two yield models: (1) cluster in-dices are incorporated into the contemporary model, and (2) both cluster indices and defect patterns are incorporated into the contemporary model. To present the special defect patterns, this research applies a pattern-analysis technique to classify the distribution of defects on a wafer into one of four patterns: random pattern, centered pattern, line pattern, and ring pattern. Experimental results show that the second model (combination of cluster indices and defect patterns) is much better than the first model (cluster indices).
Items
  • 2 records • Pages 1 •
 
310002026758 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 343425 0896 2010 一般使用(Normal) On shelf 0
310002026766 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 343425 0896 2010 c.2 一般使用(Normal) On shelf 0
  • 2 records • Pages 1 •
Reviews
Export
pickup library
 
 
Change password
Login