語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometric Modular Forms and Elliptic...
~
Hida, Haruzo.
Geometric Modular Forms and Elliptic Curves
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Geometric Modular Forms and Elliptic Curves
作者:
Hida, Haruzo.
出版者:
Singapore :World Scientific,2011.
面頁冊數:
1 online resource (468 p.)
附註:
Description based upon print version of record.
標題:
Mathematics.
電子資源:
http://www.worldscientific.com/worldscibooks/10.1142/8277#t=toc
ISBN:
9789814368650 (electronic bk.)
Geometric Modular Forms and Elliptic Curves
Hida, Haruzo.
Geometric Modular Forms and Elliptic Curves
[electronic resource]. - 2nd ed. - Singapore :World Scientific,2011. - 1 online resource (468 p.)
Description based upon print version of record.
This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li.
ISBN: 9789814368650 (electronic bk.)Subjects--Topical Terms:
184409
Mathematics.
LC Class. No.: QA567.2.E44 H53 2012
Dewey Class. No.: 516.3/52
Geometric Modular Forms and Elliptic Curves
LDR
:01322cmm a2200217 u 4500
001
345536
006
m d
007
cr |n|---|||||
008
121106s2011 si o 000 0 eng d
020
$a
9789814368650 (electronic bk.)
020
$a
9814368652 (electronic bk.)
035
$a
ocn794328360
040
$a
EBLCP
$c
EBLCP
$d
N
$d
YDXCP
$d
OCLCQ
050
4
$a
QA567.2.E44 H53 2012
082
0 4
$a
516.3/52
$a
516.352
100
1
$a
Hida, Haruzo.
$3
575526
245
1 0
$a
Geometric Modular Forms and Elliptic Curves
$h
[electronic resource].
250
$a
2nd ed.
260
$a
Singapore :
$b
World Scientific,
$c
2011.
300
$a
1 online resource (468 p.)
500
$a
Description based upon print version of record.
520
$a
This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li.
650
4
$a
Mathematics.
$3
184409
650
0
$a
Curves, Elliptic.
$3
190870
650
0
$a
Forms, Modular.
$3
272963
856
4 0
$u
http://www.worldscientific.com/worldscibooks/10.1142/8277#t=toc
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000075162
電子館藏
1圖書
電子書
EB QA567.2.E44 H53 2012 2011
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://www.worldscientific.com/worldscibooks/10.1142/8277#t=toc
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入