語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
排列形表 = Bell Permutation Tableaux : 貝爾形表
~
何澤初
排列形表 = Bell Permutation Tableaux : 貝爾形表
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Bell Permutation Tableaux
副題名:
貝爾形表
作者:
何澤初,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2012[民101]
面頁冊數:
51面圖,表格 : 30公分;
標題:
排列
標題:
Permutation
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/41337643444855496777
附註:
參考書目:面44-45
其他題名:
貝爾形表
摘要註:
Postnikov 在一篇計算全正Grassmannian 格數量的文章中,介紹了排列形表的概念。長度為 n 的排列形表數量有 n! 個是已知的。Corteel 和 Nadeau 給了一個排列形表與排列之間之間的雙射 Φ ,並介紹了兩種排列形表的子集,數量都是貝爾數的 L-貝爾以及 R-貝爾形表。Chen 跟Liu 刻畫了L-貝爾形表在phi 之下對應的排列。在本篇文章中,我們介紹三種全新的排列形表的子集,分別為L’-貝爾、R’-貝爾以及B-貝爾,並証明其數量也是貝爾數。我們也給出了在 Φ 之下刻畫R-貝爾和B-貝爾的排列迴避模式。我們還介紹了這五個排列形表子集上的統計量,並証明分布與Wach.White 在Leroux 的01-形表上的p,q-斯特林數相同。同時,也給出了不同於Corteel 和Nadeau 且能保持q 統計量的L-貝爾和R-貝爾之間的雙射。我們還探討了這五個集合之間的交集。事實證明,出現了許多熟悉的經典數列。其中,我們證明同樣長度的L-貝爾和R-貝爾交集形表數量會是貝塞爾數。 The concept of permutation tableaux was introduced by Postnikov in the contextof enumeration of the totally positive Grassmannian cells. It is known that thenumber of permutation tableaux of length n is n!. Corteel and Nadeau gave abijection Φ between the set of permutation tableaux and the set of permutations,and introduced L-Bell and R-Bell tableaux, both counted by the Bell numbers, astwo subclasses of the permutation tableaux. Chen and Liu then characterized thecorresponding permutations of the L-Bell tableaux under the bijection Φ.In this thesis we introduce three new subclasses of permutation tableaux, namelyL'-Bell, R'-Bell, and B-Bell tableaux, and prove that they are also counted by the Bell numbers. We give characterizations of R-Bell and B-Bell tableaux in terms of pattern-avoiding permutations under the bijection Φ.We also introduce statistics on these five subclasses of tableaux and prove thatthey are equidistributed with the p,q-Stirling numbers of Wach and White on the01-tableaux of Leroux. Meanwhile a new bijection consistent with the above q-statistic, but different from Corteel and Nadeau’s, is given between L-Bell tableaux and R-Bell tableaux.We also investigate the cardinality of the intersection of two of these subclasses. It turns out that many familiar classical sequences appear. Among them we prove that the cardinality of the intersection of the L-Bell and R-Bell tableaux (of the same length) is a Bessel number.
排列形表 = Bell Permutation Tableaux : 貝爾形表
何, 澤初
排列形表
= Bell Permutation Tableaux : 貝爾形表 / 何澤初撰 - [高雄市] : 撰者, 2012[民101]. - 51面 ; 圖,表格 ; 30公分.
參考書目:面44-45.
排列Permutation
排列形表 = Bell Permutation Tableaux : 貝爾形表
LDR
:03732nam0a2200289 450
001
346252
005
20170214095357.0
009
346252
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2012 k y0chiy05 e
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
排列形表
$e
貝爾形表
$d
Bell Permutation Tableaux
$z
eng
$f
何澤初撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
51面
$c
圖,表格
$d
30公分
300
$a
參考書目:面44-45
314
$a
指導教授:游森棚
328
$a
碩士論文--國立高雄大學應用數學系碩士班
330
$a
Postnikov 在一篇計算全正Grassmannian 格數量的文章中,介紹了排列形表的概念。長度為 n 的排列形表數量有 n! 個是已知的。Corteel 和 Nadeau 給了一個排列形表與排列之間之間的雙射 Φ ,並介紹了兩種排列形表的子集,數量都是貝爾數的 L-貝爾以及 R-貝爾形表。Chen 跟Liu 刻畫了L-貝爾形表在phi 之下對應的排列。在本篇文章中,我們介紹三種全新的排列形表的子集,分別為L’-貝爾、R’-貝爾以及B-貝爾,並証明其數量也是貝爾數。我們也給出了在 Φ 之下刻畫R-貝爾和B-貝爾的排列迴避模式。我們還介紹了這五個排列形表子集上的統計量,並証明分布與Wach.White 在Leroux 的01-形表上的p,q-斯特林數相同。同時,也給出了不同於Corteel 和Nadeau 且能保持q 統計量的L-貝爾和R-貝爾之間的雙射。我們還探討了這五個集合之間的交集。事實證明,出現了許多熟悉的經典數列。其中,我們證明同樣長度的L-貝爾和R-貝爾交集形表數量會是貝塞爾數。 The concept of permutation tableaux was introduced by Postnikov in the contextof enumeration of the totally positive Grassmannian cells. It is known that thenumber of permutation tableaux of length n is n!. Corteel and Nadeau gave abijection Φ between the set of permutation tableaux and the set of permutations,and introduced L-Bell and R-Bell tableaux, both counted by the Bell numbers, astwo subclasses of the permutation tableaux. Chen and Liu then characterized thecorresponding permutations of the L-Bell tableaux under the bijection Φ.In this thesis we introduce three new subclasses of permutation tableaux, namelyL'-Bell, R'-Bell, and B-Bell tableaux, and prove that they are also counted by the Bell numbers. We give characterizations of R-Bell and B-Bell tableaux in terms of pattern-avoiding permutations under the bijection Φ.We also introduce statistics on these five subclasses of tableaux and prove thatthey are equidistributed with the p,q-Stirling numbers of Wach and White on the01-tableaux of Leroux. Meanwhile a new bijection consistent with the above q-statistic, but different from Corteel and Nadeau’s, is given between L-Bell tableaux and R-Bell tableaux.We also investigate the cardinality of the intersection of two of these subclasses. It turns out that many familiar classical sequences appear. Among them we prove that the cardinality of the intersection of the L-Bell and R-Bell tableaux (of the same length) is a Bessel number.
510
1
$a
Bell Permutation Tableaux
$z
eng
517
1
$a
貝爾形表
$z
chi
610
0
$a
排列
$a
排列形表
$a
貝爾數
$a
01-形表
$a
p,q-斯特林數
$a
L-貝爾
$a
R-貝爾
$a
B-貝爾
$a
L’-貝爾
$a
R’-貝爾
$a
貝塞爾數
610
1
$a
Permutation
$a
Permutation tableaux
$a
Bell numbers
$a
01-tableaux
$a
p,q- stirling numbers
$a
L-Bell
$a
R-Bell
$a
B-Bell
$a
L'-Bell
$a
R'-Bell
$a
Bessel numbers
681
$a
008M/0019
$b
462101 2133
$v
2007年版
700
1
$a
何
$b
澤初
$4
撰
$3
576458
712
0 2
$a
國立高雄大學
$b
應用數學系碩士班
$3
166142
801
0
$a
tw
$b
NUK
$c
20121107
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/41337643444855496777
筆 0 讀者評論
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/41337643444855496777
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入