二維曲面的條狀分割 = Border Strip Decompositi...
國立高雄大學應用數學系碩士班

 

  • 二維曲面的條狀分割 = Border Strip Decompositions On Two-Dimensional Surfaces
  • Record Type: Language materials, printed : monographic
    Paralel Title: Border Strip Decompositions On Two-Dimensional Surfaces
    Author: 蔡維迦,
    Secondary Intellectual Responsibility: 國立高雄大學
    Place of Publication: [高雄市]
    Published: 撰者;
    Year of Publication: 2012[民101]
    Description: 33面圖,表格 : 30公分;
    Subject: 條狀分割
    Subject: border strip decompositions
    Online resource: http://handle.ncl.edu.tw/11296/ndltd/98651230961202632589
    Notes: 參考書目:面27
    Notes: 104年10月31日公開
    Summary: 此篇論文我們將條狀分割(border strip decompositions)的概念從矩形的Young diagram 擴展到二維曲面(two-dimensional surfaces)上,分別為:二維單位球面(cylinder)、莫比烏斯帶(Mobius band)、環面(torus)、克萊因瓶(Klein bottle)和實射影平面(projective plane)。我們計算出將這五種二維曲面做條狀分割(border strip decompositions)的方法數。 並且考慮將二維曲面旋轉,有哪些分割法不會因為旋轉而改變,我們稱此分割法為一個固定點(fixed point)。進一步的我們計算出此五種二維曲面的固定點個數各是多少。 We enumerate the border strip decompositions of a rectangular Young diagram which is generalized in a manner similar to the topology of two-dimensional surfaces such as a cylinder, Mobius band, torus, Klein bottle, and projective plane, by identifying pairs of opposite edges of the diagram. We also enumerate fixed points of border strip decompositions on the surfaces under rotations, where a border strip decomposition is a fixed point if it is invariant under the operations.
Reviews
Export
pickup library
 
 
Change password
Login