語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
具有不定型位勢之漢米爾頓系統的同宿軌解 = On the homocli...
~
吳士逸
具有不定型位勢之漢米爾頓系統的同宿軌解 = On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
作者:
吳士逸,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2015[民104]
面頁冊數:
30面圖,表 : 30公分;
標題:
微分方程
標題:
Di erential equations
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/71546127313027778103
附註:
104年10月31日公開
附註:
參考書目:面20-23
摘要註:
在文章中,我們討論二階漢米爾頓系統u - L(t)u+Wu(t,u) = 0當W∈c1(RxRn,R)具有不定型位勢且L(t)可以為一半正定矩陣對於所有的t 是實數的時候,我們在二階漢米爾頓系統的同述軌解上得到了一些新的結果,另外我們還討論了一些同述軌解的性質。 In this paper, we study homoclinic solutions for the second-order Hamiltonian systemsu - L(t)u + Wu (t; u) = 0, where W 2 C1(R RN ; R) is an inde nite potential, andL(t) is allowed to be a positive semi-de nite symmetric matrix for all t 2 R, that is L(t) 0 in some nite interval T of R. We obtain some new results on the existence ofhomoclinic solutions for the second-order Hamiltonian systems. Furthermore, we alsostudy the concentration of homoclinic solutions.
具有不定型位勢之漢米爾頓系統的同宿軌解 = On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
吳, 士逸
具有不定型位勢之漢米爾頓系統的同宿軌解
= On the homoclinic Solutions of Hamiltonian System with Indefinite Potential / 吳士逸撰 - [高雄市] : 撰者, 2015[民104]. - 30面 ; 圖,表 ; 30公分.
104年10月31日公開參考書目:面20-23.
微分方程Di erential equations
具有不定型位勢之漢米爾頓系統的同宿軌解 = On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
LDR
:01878nam0a2200289 450
001
458478
005
20170214093200.0
009
458478
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2015 k y0chiy50 b
101
0
$a
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
具有不定型位勢之漢米爾頓系統的同宿軌解
$d
On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
$z
eng
$f
吳士逸撰
210
$a
[高雄市]
$c
撰者
$d
2015[民104]
215
0
$a
30面
$c
圖,表
$d
30公分
300
$a
104年10月31日公開
300
$a
參考書目:面20-23
314
$a
指導教授:吳宗芳教授
328
$a
碩士論文--國立高雄大學應用數學系碩士班
330
$a
在文章中,我們討論二階漢米爾頓系統u - L(t)u+Wu(t,u) = 0當W∈c1(RxRn,R)具有不定型位勢且L(t)可以為一半正定矩陣對於所有的t 是實數的時候,我們在二階漢米爾頓系統的同述軌解上得到了一些新的結果,另外我們還討論了一些同述軌解的性質。 In this paper, we study homoclinic solutions for the second-order Hamiltonian systemsu - L(t)u + Wu (t; u) = 0, where W 2 C1(R RN ; R) is an inde nite potential, andL(t) is allowed to be a positive semi-de nite symmetric matrix for all t 2 R, that is L(t) 0 in some nite interval T of R. We obtain some new results on the existence ofhomoclinic solutions for the second-order Hamiltonian systems. Furthermore, we alsostudy the concentration of homoclinic solutions.
510
1
$a
On the homoclinic Solutions of Hamiltonian System with Indefinite Potential
$z
eng
610
0
$a
微分方程
$a
同宿軌解
610
1
$a
Di erential equations
$a
Homoclinic solutions
681
$a
008M/0019
$b
462101 2643
$v
2007年版
700
1
$a
吳
$b
士逸
$4
撰
$3
709716
712
0 2
$a
國立高雄大學
$b
應用數學系碩士班
$3
166142
801
0
$a
tw
$b
NUK
$c
20151019
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/71546127313027778103
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310002562679
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 462101 2643 2015
一般使用(Normal)
在架
0
310002562687
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 462101 2643 2015 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/71546127313027778103
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入