語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hydrological data driven modellinga ...
~
Mathew, Jimson.
Hydrological data driven modellinga case study approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hydrological data driven modellingby Renji Remesan, Jimson Mathew.
其他題名:
a case study approach /
作者:
Remesan, Renji.
其他作者:
Mathew, Jimson.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xv, 250 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Hydrologic models.
電子資源:
http://dx.doi.org/10.1007/978-3-319-09235-5
ISBN:
9783319092355 (electronic bk.)
Hydrological data driven modellinga case study approach /
Remesan, Renji.
Hydrological data driven modelling
a case study approach /[electronic resource] :by Renji Remesan, Jimson Mathew. - Cham :Springer International Publishing :2015. - xv, 250 p. :ill. (some col.), digital ;24 cm. - Earth systems data and models ;v.1. - Earth systems data and models ;v.1..
Introduction -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Model Data Selection and Data Pre-processing Approaches -- Machine Learning and Artificial Intelligence Based Approaches -- Data based Solar Radiation Modelling -- Data based Rainfall-Runoff Modelling -- Data based Evapotranspiration Modelling -- Application of Statistical Blockade in Hydrology.
This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.
ISBN: 9783319092355 (electronic bk.)
Standard No.: 10.1007/978-3-319-09235-5doiSubjects--Topical Terms:
247955
Hydrologic models.
LC Class. No.: GB656.2.H9
Dewey Class. No.: 551.48011
Hydrological data driven modellinga case study approach /
LDR
:02305nmm a2200325 a 4500
001
460465
003
DE-He213
005
20150706134213.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319092355 (electronic bk.)
020
$a
9783319092348 (paper)
024
7
$a
10.1007/978-3-319-09235-5
$2
doi
035
$a
978-3-319-09235-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
GB656.2.H9
072
7
$a
RBK
$2
bicssc
072
7
$a
SCI081000
$2
bisacsh
082
0 4
$a
551.48011
$2
23
090
$a
GB656.2.H9
$b
R386 2015
100
1
$a
Remesan, Renji.
$3
711921
245
1 0
$a
Hydrological data driven modelling
$h
[electronic resource] :
$b
a case study approach /
$c
by Renji Remesan, Jimson Mathew.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xv, 250 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Earth systems data and models ;
$v
v.1
505
0
$a
Introduction -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Hydroinformatics and Data based Modelling Issues in Hydrology -- Model Data Selection and Data Pre-processing Approaches -- Machine Learning and Artificial Intelligence Based Approaches -- Data based Solar Radiation Modelling -- Data based Rainfall-Runoff Modelling -- Data based Evapotranspiration Modelling -- Application of Statistical Blockade in Hydrology.
520
$a
This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.
650
0
$a
Hydrologic models.
$3
247955
650
1 4
$a
Earth Sciences.
$3
309702
650
2 4
$a
Hydrogeology.
$3
195801
650
2 4
$a
Hydrology/Water Resources.
$3
675922
650
2 4
$a
Geoengineering, Foundations, Hydraulics.
$3
338647
700
1
$a
Mathew, Jimson.
$3
568974
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Earth systems data and models ;
$v
v.1.
$3
711922
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-09235-5
950
$a
Earth and Environmental Science (Springer-11646)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000109972
電子館藏
1圖書
電子書
EB GB656.2.H9 R386 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-09235-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入