語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Jacobi forms, finite quadratic modul...
~
Boylan, Hatice.
Jacobi forms, finite quadratic modules and Weil representations over number fields
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Jacobi forms, finite quadratic modules and Weil representations over number fieldsby Hatice Boylan.
作者:
Boylan, Hatice.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xix, 130 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Jacobi forms.
電子資源:
http://dx.doi.org/10.1007/978-3-319-12916-7
ISBN:
9783319129167 (electronic bk.)
Jacobi forms, finite quadratic modules and Weil representations over number fields
Boylan, Hatice.
Jacobi forms, finite quadratic modules and Weil representations over number fields
[electronic resource] /by Hatice Boylan. - Cham :Springer International Publishing :2015. - xix, 130 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21300075-8434 ;. - Lecture notes in mathematics ;2035..
The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
ISBN: 9783319129167 (electronic bk.)
Standard No.: 10.1007/978-3-319-12916-7doiSubjects--Topical Terms:
347653
Jacobi forms.
LC Class. No.: QA243
Dewey Class. No.: 512.7
Jacobi forms, finite quadratic modules and Weil representations over number fields
LDR
:02007nmm a2200313 a 4500
001
461177
003
DE-He213
005
20150812142046.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319129167 (electronic bk.)
020
$a
9783319129150 (paper)
024
7
$a
10.1007/978-3-319-12916-7
$2
doi
035
$a
978-3-319-12916-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA243
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
082
0 4
$a
512.7
$2
23
090
$a
QA243
$b
.B792 2015
100
1
$a
Boylan, Hatice.
$3
713106
245
1 0
$a
Jacobi forms, finite quadratic modules and Weil representations over number fields
$h
[electronic resource] /
$c
by Hatice Boylan.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xix, 130 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2130
520
$a
The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
650
0
$a
Jacobi forms.
$3
347653
650
0
$a
Mathematics.
$3
184409
650
0
$a
Number theory.
$3
189521
650
2 4
$a
Number Theory.
$3
274059
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-12916-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000110684
電子館藏
1圖書
電子書
EB QA243 B792 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-12916-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入