語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-objective swarm intelligenceth...
~
Dehuri, Satchidananda.
Multi-objective swarm intelligencetheoretical advances and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multi-objective swarm intelligenceedited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda.
其他題名:
theoretical advances and applications /
其他作者:
Panda, Mrutyunjaya.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg :2015.
面頁冊數:
xiv, 201 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Swarm intelligence.
電子資源:
http://dx.doi.org/10.1007/978-3-662-46309-3
ISBN:
9783662463093 (electronic bk.)
Multi-objective swarm intelligencetheoretical advances and applications /
Multi-objective swarm intelligence
theoretical advances and applications /[electronic resource] :edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xiv, 201 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.5921860-949X ;. - Studies in computational intelligence ;v. 216..
Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion.
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.
ISBN: 9783662463093 (electronic bk.)
Standard No.: 10.1007/978-3-662-46309-3doiSubjects--Topical Terms:
237730
Swarm intelligence.
LC Class. No.: Q337.3
Dewey Class. No.: 006.3824
Multi-objective swarm intelligencetheoretical advances and applications /
LDR
:02216nmm a2200325 a 4500
001
462699
003
DE-He213
005
20151027143245.0
006
m d
007
cr nn 008maaau
008
151119s2015 gw s 0 eng d
020
$a
9783662463093 (electronic bk.)
020
$a
9783662463086 (paper)
024
7
$a
10.1007/978-3-662-46309-3
$2
doi
035
$a
978-3-662-46309-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q337.3
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3824
$2
23
090
$a
Q337.3
$b
.M961 2015
245
0 0
$a
Multi-objective swarm intelligence
$h
[electronic resource] :
$b
theoretical advances and applications /
$c
edited by Satchidananda Dehuri, Alok Kumar Jagadev, Mrutyunjaya Panda.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xiv, 201 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.592
505
0
$a
Introduction -- Behavior of Bacterial Colony -- E.coli Bacterial Colonies -- Optimization based on E.coli Bacterial Colony -- Classification of BFO Algorithm -- Multi-objective optimization based on BF -- An overview of BFO Applications -- Conclusion.
520
$a
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.
650
0
$a
Swarm intelligence.
$3
237730
650
0
$a
Mathematical optimization.
$3
183292
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Panda, Mrutyunjaya.
$3
679696
700
1
$a
Dehuri, Satchidananda.
$3
276576
700
1
$a
Jagadev, Alok Kumar.
$3
715806
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-46309-3
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000112402
電子館藏
1圖書
電子書
EB Q337.3 M961 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-662-46309-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入