語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The value of social media for predic...
~
Nofer, Michael.
The value of social media for predicting stock returnspreconditions, instruments and performance analysis /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The value of social media for predicting stock returnsby Michael Nofer.
其他題名:
preconditions, instruments and performance analysis /
作者:
Nofer, Michael.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2015.
面頁冊數:
xvii, 128 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Speculation.
電子資源:
http://dx.doi.org/10.1007/978-3-658-09508-6
ISBN:
9783658095086 (electronic bk.)
The value of social media for predicting stock returnspreconditions, instruments and performance analysis /
Nofer, Michael.
The value of social media for predicting stock returns
preconditions, instruments and performance analysis /[electronic resource] :by Michael Nofer. - Wiesbaden :Springer Fachmedien Wiesbaden :2015. - xvii, 128 p. :ill., digital ;24 cm.
Introduction -- Market Anomalies on Two-Sided Auction Platforms -- Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community -- Using Twitter to Predict the Stock Market: Where is the Mood Effect? -- The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment -- Literature.
Michael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the investors' risk appetite and in turn the willingness to invest in stocks. Discussion forums also provide an opportunity to identify opinions on certain companies. Taking Social Media platforms as examples, the author examines the forecasting quality of user generated content on the Internet. Contents Market Anomalies on Two-Sided Auction Platforms Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community Using Twitter to Predict the Stock Market: Where is the Mood Effect? The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment Target Groups Scientists and students in the field of IT, finance and business Private investors, institutional investors About the Author Michael Nofer wrote his dissertation at the Chair of Information Systems | Electronic Markets at TU Darmstadt, Germany.
ISBN: 9783658095086 (electronic bk.)
Standard No.: 10.1007/978-3-658-09508-6doiSubjects--Topical Terms:
207691
Speculation.
LC Class. No.: HG6015
Dewey Class. No.: 332.645
The value of social media for predicting stock returnspreconditions, instruments and performance analysis /
LDR
:02506nmm a2200325 a 4500
001
465534
003
DE-He213
005
20151112093835.0
006
m d
007
cr nn 008maaau
008
151222s2015 gw s 0 eng d
020
$a
9783658095086 (electronic bk.)
020
$a
9783658095079 (paper)
024
7
$a
10.1007/978-3-658-09508-6
$2
doi
035
$a
978-3-658-09508-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG6015
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
332.645
$2
23
090
$a
HG6015
$b
.N773 2015
100
1
$a
Nofer, Michael.
$3
719325
245
1 4
$a
The value of social media for predicting stock returns
$h
[electronic resource] :
$b
preconditions, instruments and performance analysis /
$c
by Michael Nofer.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2015.
300
$a
xvii, 128 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Market Anomalies on Two-Sided Auction Platforms -- Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community -- Using Twitter to Predict the Stock Market: Where is the Mood Effect? -- The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment -- Literature.
520
$a
Michael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the investors' risk appetite and in turn the willingness to invest in stocks. Discussion forums also provide an opportunity to identify opinions on certain companies. Taking Social Media platforms as examples, the author examines the forecasting quality of user generated content on the Internet. Contents Market Anomalies on Two-Sided Auction Platforms Are Crowds on the Internet Wiser than Experts? – The Case of a Stock Prediction Community Using Twitter to Predict the Stock Market: Where is the Mood Effect? The Economic Impact of Privacy Violations and Security Breaches – A Laboratory Experiment Target Groups Scientists and students in the field of IT, finance and business Private investors, institutional investors About the Author Michael Nofer wrote his dissertation at the Chair of Information Systems | Electronic Markets at TU Darmstadt, Germany.
650
0
$a
Speculation.
$3
207691
650
0
$a
Stock price forecasting.
$3
210082
650
0
$a
Online social networks
$x
Economic aspects.
$3
384451
650
0
$a
Social media
$x
Economic aspects.
$3
529568
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Financial Economics.
$3
274377
650
2 4
$a
IT in Business.
$3
703717
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-09508-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000113975
電子館藏
1圖書
電子書
EB HG6015 N773 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-658-09508-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入