語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Harmonic and geometric analysis
~
Citti, Giovanna.
Harmonic and geometric analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Harmonic and geometric analysisby Giovanna Citti ... [et al.].
其他作者:
Citti, Giovanna.
出版者:
Basel :Springer Basel :2015.
面頁冊數:
ix, 170 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Harmonic analysis.
電子資源:
http://dx.doi.org/10.1007/978-3-0348-0408-0
ISBN:
9783034804080 (electronic bk.)
Harmonic and geometric analysis
Harmonic and geometric analysis
[electronic resource] /by Giovanna Citti ... [et al.]. - Basel :Springer Basel :2015. - ix, 170 p. :ill. (some col.), digital ;24 cm. - Advanced courses in mathematics, CRM Barcelona,2297-0304. - Advanced courses in mathematics, CRM Barcelona..
1 Models of the Visual Cortex in Lie Groups -- 2 Multilinear Calderon-Zygmund Singular Integrals -- 3 Singular Integrals and Weights -- 4 De Giorgi-Nash-Moser Theory.
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderon-Zygmund theory, especially the Lp inequalities for Calderon-Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differential equations in divergence form.
ISBN: 9783034804080 (electronic bk.)
Standard No.: 10.1007/978-3-0348-0408-0doiSubjects--Topical Terms:
189705
Harmonic analysis.
LC Class. No.: QA403
Dewey Class. No.: 515.2433
Harmonic and geometric analysis
LDR
:02224nmm a2200325 a 4500
001
465796
003
DE-He213
005
20151116170225.0
006
m d
007
cr nn 008maaau
008
151222s2015 sz s 0 eng d
020
$a
9783034804080 (electronic bk.)
020
$a
9783034804073 (paper)
024
7
$a
10.1007/978-3-0348-0408-0
$2
doi
035
$a
978-3-0348-0408-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA403
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.2433
$2
23
090
$a
QA403
$b
.H288 2015
245
0 0
$a
Harmonic and geometric analysis
$h
[electronic resource] /
$c
by Giovanna Citti ... [et al.].
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2015.
300
$a
ix, 170 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Advanced courses in mathematics, CRM Barcelona,
$x
2297-0304
505
0
$a
1 Models of the Visual Cortex in Lie Groups -- 2 Multilinear Calderon-Zygmund Singular Integrals -- 3 Singular Integrals and Weights -- 4 De Giorgi-Nash-Moser Theory.
520
$a
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderon-Zygmund theory, especially the Lp inequalities for Calderon-Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differential equations in divergence form.
650
0
$a
Harmonic analysis.
$3
189705
650
0
$a
Geometric analysis.
$3
509359
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Analysis.
$3
273775
650
2 4
$a
Partial Differential Equations.
$3
274075
700
1
$a
Citti, Giovanna.
$e
author.
$3
679222
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Advanced courses in mathematics, CRM Barcelona.
$3
701754
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0408-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000114237
電子館藏
1圖書
電子書
EB QA403 H288 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-0348-0408-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入