語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis.III,Analytic and differenti...
~
Godement, Roger.
Analysis.III,Analytic and differential functions, manifolds and Riemann surfaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analysis.by Roger Godement.
其他題名:
Analytic and differential functions, manifolds and Riemann surfaces
作者:
Godement, Roger.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
vii, 321 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical analysis.
電子資源:
http://dx.doi.org/10.1007/978-3-319-16053-5
ISBN:
9783319160535 (electronic bk.)
Analysis.III,Analytic and differential functions, manifolds and Riemann surfaces
Godement, Roger.
Analysis.
III,Analytic and differential functions, manifolds and Riemann surfaces[electronic resource] /Analytic and differential functions, manifolds and Riemann surfacesby Roger Godement. - Cham :Springer International Publishing :2015. - vii, 321 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
VIII Cauchy Theory -- IX Multivariate Differential and Integral Calculus -- X The Riemann Surface of an Algebraic Function.
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas) The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations) A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R)
ISBN: 9783319160535 (electronic bk.)
Standard No.: 10.1007/978-3-319-16053-5doiSubjects--Topical Terms:
186133
Mathematical analysis.
LC Class. No.: QA300
Dewey Class. No.: 515
Analysis.III,Analytic and differential functions, manifolds and Riemann surfaces
LDR
:02424nmm a2200373 a 4500
001
465816
003
DE-He213
005
20151117131935.0
006
m d
007
cr nn 008maaau
008
151222s2015 gw s 0 eng d
020
$a
9783319160535 (electronic bk.)
020
$a
9783319160528 (paper)
024
7
$a
10.1007/978-3-319-16053-5
$2
doi
035
$a
978-3-319-16053-5
040
$a
GP
$c
GP
041
1
$a
eng
$h
fre
050
4
$a
QA300
072
7
$a
PBKB
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
MAT037000
$2
bisacsh
082
0 4
$a
515
$2
23
090
$a
QA300
$b
.G581 2015
100
1
$a
Godement, Roger.
$3
256492
240
1 0
$a
Analyse mathematique III.
$l
English
245
1 0
$a
Analysis.
$n
III,
$p
Analytic and differential functions, manifolds and Riemann surfaces
$h
[electronic resource] /
$c
by Roger Godement.
246
3 0
$a
Analytic and differential functions, manifolds and Riemann surfaces
246
3
$a
Analysis 3
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
vii, 321 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
VIII Cauchy Theory -- IX Multivariate Differential and Integral Calculus -- X The Riemann Surface of an Algebraic Function.
520
$a
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas) The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations) A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R)
650
0
$a
Mathematical analysis.
$3
186133
650
0
$a
Algebra.
$3
188312
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Real Functions.
$3
273779
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
558272
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-16053-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000114257
電子館藏
1圖書
電子書
EB QA300 G581 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-16053-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入