語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Logical modeling of biological systems
~
Fariñas del Cerro, Luis.
Logical modeling of biological systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Logical modeling of biological systemsedited by Luis Fariñas del Cerro, Katsumi Inoue.
其他作者:
Inoue, Katsumi.
出版者:
London :ISTE, Ltd. ;2014.
面頁冊數:
1 online resource (429 p.)
標題:
Biological systemsComputer simulation.
電子資源:
http://onlinelibrary.wiley.com/book/10.1002/9781119005223
ISBN:
9781119005223 (electronic bk.)
Logical modeling of biological systems
Logical modeling of biological systems
[electronic resource] /edited by Luis Fariñas del Cerro, Katsumi Inoue. - London :ISTE, Ltd. ;2014. - 1 online resource (429 p.) - ISTE. - ISTE..
Includes bibliographical references and index.
Chapter 1. Symbolic Representation and Inference of Regulatory Network Structures; 1.1. Introduction: logical modeling and abductive inference in systems biology; 1.2. Logical modeling of regulatory networks; 1.2.1. Background; 1.2.2. Logical model of signed-directed networks; 1.2.2.1. Prior knowledge; 1.2.2.2. Rule-based underlying model; 1.2.2.3. Integrity constraints; 1.2.2.4. Inferring signed-directed networks and explanatory reasoning; 1.3. Evaluation of the ARNI approach; 1.3.1. ARNI predictive power.
Systems Biology is the systematic study of the interactions between the components of a biological system and studies how these interactions give rise to the function and behavior of the living system. Through this, a life process is to be understood as a whole system rather than the collection of the parts considered separately. Systems Biology is therefore more than just an emerging field: it represents a new way of thinking about biology with a dramatic impact on the way that research is performed. The logical approach provides an intuitive method to provide explanations based on an expr.
Text in English.
ISBN: 9781119005223 (electronic bk.)Subjects--Topical Terms:
194056
Biological systems
--Computer simulation.
LC Class. No.: QH301 / .L384 2014eb
Dewey Class. No.: 578.109245
Logical modeling of biological systems
LDR
:04640cmm a2200385Mi 4500
001
467166
003
OCoLC
005
20141127183742.0
006
m o d
007
cr |||||||||||
008
160107s2014 enk ob 001 0 eng d
020
$a
9781119005223 (electronic bk.)
020
$a
1119005221 (electronic bk.)
020
$a
9781119015338 (electronic bk.)
020
$a
1119015332 (electronic bk.)
020
$z
9781848216808
020
$z
1848216807
035
$a
(OCoLC)887507393
035
$a
ocn887507393
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
IDEBK
$d
DG1
$d
N
$d
YDXCP
$d
E7B
$d
OCLCQ
$d
OCLCO
$d
VRC
$d
CDX
$d
MEU
050
4
$a
QH301
$b
.L384 2014eb
082
0 4
$a
578.109245
245
0 0
$a
Logical modeling of biological systems
$h
[electronic resource] /
$c
edited by Luis Fariñas del Cerro, Katsumi Inoue.
260
$a
London :
$b
ISTE, Ltd. ;
$a
Hoboken :
$b
Wiley,
$c
2014.
300
$a
1 online resource (429 p.)
490
1
$a
ISTE
504
$a
Includes bibliographical references and index.
505
0
$a
Chapter 1. Symbolic Representation and Inference of Regulatory Network Structures; 1.1. Introduction: logical modeling and abductive inference in systems biology; 1.2. Logical modeling of regulatory networks; 1.2.1. Background; 1.2.2. Logical model of signed-directed networks; 1.2.2.1. Prior knowledge; 1.2.2.2. Rule-based underlying model; 1.2.2.3. Integrity constraints; 1.2.2.4. Inferring signed-directed networks and explanatory reasoning; 1.3. Evaluation of the ARNI approach; 1.3.1. ARNI predictive power.
505
0
$a
1.3.1.1. Prediction under biological and experimental noise1.3.1.2. Prediction under incomplete data; 1.3.2. ARNI expressive power; 1.3.2.1. Network motif representations; 1.3.2.2. Representing complex interactions; 1.4. ARNI assisted scientific methodology; 1.4.1. Testing biological hypotheses; 1.4.1.1. Testing cross-talk between signaling pathways; 1.4.2. Informative experiments for networks discrimination; 1.5. Related work and comparison with non-symbolic approaches; 1.5.1. Limitations and future work; 1.6. Conclusions; 1.7. Bibliography.
505
0
$a
Chapter 2. Reasoning on the Response of Logical Signaling Networks with ASP2.1. Introduction; 2.2. Answer set programming at a glance; 2.3. Learn and control logical networks with ASP; 2.3.1. Preliminaries; 2.3.2. Reasoning on the response of logical networks; 2.3.3. Learning models of immediate-early response; 2.3.4. Minimal intervention strategies; 2.3.5. Software toolbox: caspo; 2.4. Conclusion; 2.5. Acknowledgments; 2.6. Bibliography; Chapter 3. A Logical Model for Molecular Interaction Maps; 3.1. Introduction; 3.2. Biological background; 3.3. Logical model.
505
0
$a
3.3.1. Activation and inhibition3.3.1.1. Activation and inhibition capacities; 3.3.1.2. Relations between the activation and inhibition causes and effects; 3.3.1.3. Relations between causal relations; 3.3.2. Model extension; 3.3.2.1. Phosphorylation; 3.3.2.2. Autophosphorylation; 3.3.2.3. Binding; 3.3.3. Causality relations redefinition; 3.3.3.1. Activation axioms; 3.3.3.2. Phosphorylation axioms; 3.3.3.3. Autophosphorylation axioms; 3.3.3.4. Binding axioms; 3.3.3.5. Inhibition axioms; 3.4. Quantifier elimination for restricted formulas; 3.4.1. Domain formulas; 3.4.2. Restricted formulas.
505
0
$a
3.4.3. Completion formulas3.4.4. Domain of domain formulas; 3.4.5. Quantifier elimination procedure; 3.5. Reasoning about interactions in metabolic interaction maps; 3.6. Conclusion and future work; 3.7. Acknowledgments; 3.8. Bibliography; Chapter 4. Analyzing Large Network Dynamics with Process Hitting; 4.1. Introduction/state of the art; 4.1.1. The modeling challenge; 4.1.2. Historical context: Boolean and discrete models; 4.1.3. Analysis issues; 4.1.4. The process hitting framework; 4.1.5. Outline; 4.2. Discrete modeling with the process hitting; 4.2.1. Motivation; 4.2.2. The process hitting framework.
520
$a
Systems Biology is the systematic study of the interactions between the components of a biological system and studies how these interactions give rise to the function and behavior of the living system. Through this, a life process is to be understood as a whole system rather than the collection of the parts considered separately. Systems Biology is therefore more than just an emerging field: it represents a new way of thinking about biology with a dramatic impact on the way that research is performed. The logical approach provides an intuitive method to provide explanations based on an expr.
546
$a
Text in English.
588
0
$a
Description based on print version record.
650
0
$a
Biological systems
$x
Computer simulation.
$3
194056
700
1
$a
Inoue, Katsumi.
$3
721834
700
1
$a
Fariñas del Cerro, Luis.
$3
721835
830
0
$a
ISTE.
$3
698802
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781119005223
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000114892
電子館藏
1圖書
電子書
EB QH301 L832 2014
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://onlinelibrary.wiley.com/book/10.1002/9781119005223
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入