語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Topology with applicationstopologica...
~
Naimpally, S. A.
Topology with applicationstopological spaces via near and far /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Topology with applicationsSomashekhar A. Naimpally, James F. Peters.
其他題名:
topological spaces via near and far /
作者:
Naimpally, S. A.
其他作者:
Peters, James F.
出版者:
New Jersey :World Scientific,c2013.
面頁冊數:
1 online resource (xv, 277 p.)
標題:
Topology.
電子資源:
http://www.worldscientific.com/worldscibooks/10.1142/8501#t=toc
ISBN:
9789814407663 (electronic bk.)
Topology with applicationstopological spaces via near and far /
Naimpally, S. A.
Topology with applications
topological spaces via near and far /[electronic resource] :Somashekhar A. Naimpally, James F. Peters. - New Jersey :World Scientific,c2013. - 1 online resource (xv, 277 p.)
Includes bibliographical references and indexes.
1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems.
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
ISBN: 9789814407663 (electronic bk.)Subjects--Topical Terms:
185965
Topology.
LC Class. No.: QA611
Dewey Class. No.: 514
Topology with applicationstopological spaces via near and far /
LDR
:06100cmm a2200301Ia 4500
001
468086
003
OCoLC
005
20151207015710.0
006
m o d
007
cr cnu---unuuu
008
160112s2013 nju ob 001 0 eng d
020
$a
9789814407663 (electronic bk.)
020
$a
9814407666 (electronic bk.)
020
$z
9789814407656
020
$z
9814407658
035
$a
(OCoLC)840506973
035
$a
ocn840506973
040
$a
N
$b
eng
$c
N
$d
YDXCP
$d
CUS
$d
DEBSZ
$d
I9W
$d
GGVRL
$d
OCLCQ
$d
OCLCF
050
4
$a
QA611
082
0 4
$a
514
$2
23
100
1
$a
Naimpally, S. A.
$3
723450
245
1 0
$a
Topology with applications
$h
[electronic resource] :
$b
topological spaces via near and far /
$c
Somashekhar A. Naimpally, James F. Peters.
260
$a
New Jersey :
$b
World Scientific,
$c
c2013.
300
$a
1 online resource (xv, 277 p.)
504
$a
Includes bibliographical references and indexes.
505
0
$a
1. Basic framework. 1.1. Preliminaries. 1.2. Metric space. 1.3. Gap functional and closure of a set. 1.4. Limit of a sequence. 1.5. Continuity. 1.6. Open and closed sets. 1.7. Metric and fine proximities. 1.8. Metric nearness. 1.9. Compactness. 1.10. Lindelöf spaces and characterisations of compactness. 1.11. Completeness and total boundedness. 1.12. Connectedness. 1.13. Chainable metric spaces. 1.14. UC spaces. 1.15. Function spaces. 1.16. Completion. 1.17. Hausdorff metric topology. 1.18. First countable, second countable and separable spaces. 1.19. Dense subspaces and Taimanov's theorem. 1.20. Application: proximal neighbourhoods in cell biology. 1.21. Problems -- 2. What is topology? 2.1. Topology. 2.2. Examples. 2.3. Closed and open sets. 2.4. Closure and interior. 2.5. Connectedness. 2.6. Subspace. 2.7. Bases and subbases. 2.8. More examples. 2.9. First countable, second countable and Lindelöf. 2.10. Application: topology of digital images. 2.11. Problems -- 3. Symmetric proximity. 3.1. Proximities. 3.2. Proximal neighbourhood. 3.3. Application: EF-proximity in visual merchandising. 3.4. Problems -- 4. Continuity and proximal continuity. 4.1. Continuous functions. 4.2. Continuous invariants. 4.3. Application: descriptive EF-proximity in NLO microscopy. 4.4. Problems -- 5. Separation axioms. 5.1 Discovery of the separation axioms. 5.2 Functional separation. 5.3 Observations about EF-proximity. 5.4 Application: distinct points in Hausdorff raster spaces. 5.5. Problems -- 6. Uniform spaces, filters and nets. 6.1. Uniformity via pseudometrics. 6.2. Filters and ultrafilters. 6.3. Ultrafilters. 6.4. Nets (Moore-Smith convergence). 6.5. Equivalence of nets and filters. 6.6. Application: proximal neighbourhoods in camouflage neighbourhood filters. 6.7. Problems -- 7. Compactness and higher separation axioms. 7.1. Compactness: net and filter views. 7.2. Compact subsets. 7.3. Compactness of a Hausdorff space. 7.4. Local compactness. 7.5. Generalisations of compactness. 7.6. Application: compact spaces in forgery detection. 7.7. Problems.
505
8
$a
8. Initial and final structures, embedding. 8.1. Initial structures. 8.2. Embedding. 8.3. Final structures. 8.4. Application: quotient topology in image analysis. 8.5. Problems -- 9. Grills, clusters, bunches and proximal Wallman compactification. 9.1. Grills, clusters and bunches. 9.2. Grills. 9.3. Clans. 9.4. Bunches. 9.5. Clusters. 9.6. Proximal Wallman compactification. 9.7. Examples of compactifications. 9.8. Application: grills in pattern recognition. 9.9. Problems -- 10. Extensions of continuous functions: Taimanov theorem. 10.1. Proximal continuity. 10.2. Generalised Taimanov theorem. 10.3. Comparison of compactifications. 10.4. Application: topological psychology. 10.5. Problems -- 11. Metrisation. 11.1. Structures induced by a metric. 11.2. Uniform metrisation. 11.3. Proximal metrisation. 11.4. Topological metrisation. 11.5. Application: admissible covers in Micropalaeontology. 11.6. Problems -- 12. Function space topologies. 12.1. Topologies and convergences on a set of functions. 12.2. Pointwise convergence. 12.3. Compact open topology. 12.4. Proximal convergence. 12.5. Uniform convergence. 12.6. Pointwise convergence and preservation of continuity. 12.7. Uniform convergence on compacta. 12.8. Graph topologies. 12.9. Inverse uniform convergence for partial functions. 12.10. Application: hit and miss topologies in population dynamics. 12.11. Problems -- 13. Hyperspace topologies. 13.1. Overview of hyperspace topologies. 13.2. Vietoris topology. 13.3. Proximal topology. 13.4. Hausdorff metric (uniform) topology. 13.5. Application: local near sets in Hawking chronologies. 13.6. Problems -- 14. Selected topics: uniformity and metrisation. 14.1. Entourage uniformity. 14.2. Covering uniformity. 14.3. Topological metrisation theorems. 14.4. Tietze's extension theorem. 14.5. Application: local patterns. 14.6. Problems.
520
$a
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F. Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
588
0
$a
Print version record.
650
0
$a
Topology.
$3
185965
700
1
$a
Peters, James F.
$3
280974
856
4 0
$u
http://www.worldscientific.com/worldscibooks/10.1142/8501#t=toc
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000115890
電子館藏
1圖書
電子書
EB QA611 N157 c2013
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://www.worldscientific.com/worldscibooks/10.1142/8501#t=toc
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入