語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Parabolic equations in biologygrowth...
~
Perthame, Benoit.
Parabolic equations in biologygrowth, reaction, movement and diffusion /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Parabolic equations in biologyby Benoit Perthame.
其他題名:
growth, reaction, movement and diffusion /
作者:
Perthame, Benoit.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xii, 199 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Differential equations, Parabolic.
電子資源:
http://dx.doi.org/10.1007/978-3-319-19500-1
ISBN:
9783319195001$q(electronic bk.)
Parabolic equations in biologygrowth, reaction, movement and diffusion /
Perthame, Benoit.
Parabolic equations in biology
growth, reaction, movement and diffusion /[electronic resource] :by Benoit Perthame. - Cham :Springer International Publishing :2015. - xii, 199 p. :ill. (some col.), digital ;24 cm. - Lecture notes on mathematical modelling in the life sciences,2193-4789. - Lecture notes on mathematical modelling in the life sciences..
1.Parabolic Equations in Biology -- 2.Relaxation, Perturbation and Entropy Methods -- 3.Weak Solutions of Parabolic Equations in whole Space -- 4.Traveling Waves -- 5.Spikes, Spots and Pulses -- 6.Blow-up and Extinction of Solutions -- 7.Linear Instability, Turing Instability and Pattern Formation -- 8.The Fokker-Planck Equation -- 9.From Jumps and Scattering to the Fokker-Planck Equation -- 10.Fast Reactions and the Stefan free Boundary Problem.
This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
ISBN: 9783319195001$q(electronic bk.)
Standard No.: 10.1007/978-3-319-19500-1doiSubjects--Topical Terms:
247280
Differential equations, Parabolic.
LC Class. No.: QA377
Dewey Class. No.: 515.3534
Parabolic equations in biologygrowth, reaction, movement and diffusion /
LDR
:02434nmm a2200325 a 4500
001
476917
003
DE-He213
005
20160413131634.0
006
m d
007
cr nn 008maaau
008
160526s2015 gw s 0 eng d
020
$a
9783319195001$q(electronic bk.)
020
$a
9783319194998$q(paper)
024
7
$a
10.1007/978-3-319-19500-1
$2
doi
035
$a
978-3-319-19500-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
515.3534
$2
23
090
$a
QA377
$b
.P468 2015
100
1
$a
Perthame, Benoit.
$3
731705
245
1 0
$a
Parabolic equations in biology
$h
[electronic resource] :
$b
growth, reaction, movement and diffusion /
$c
by Benoit Perthame.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xii, 199 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes on mathematical modelling in the life sciences,
$x
2193-4789
505
0
$a
1.Parabolic Equations in Biology -- 2.Relaxation, Perturbation and Entropy Methods -- 3.Weak Solutions of Parabolic Equations in whole Space -- 4.Traveling Waves -- 5.Spikes, Spots and Pulses -- 6.Blow-up and Extinction of Solutions -- 7.Linear Instability, Turing Instability and Pattern Formation -- 8.The Fokker-Planck Equation -- 9.From Jumps and Scattering to the Fokker-Planck Equation -- 10.Fast Reactions and the Stefan free Boundary Problem.
520
$a
This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
650
0
$a
Differential equations, Parabolic.
$3
247280
650
0
$a
Computational biology.
$3
210438
650
0
$a
Biomathematics.
$3
212374
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Applications of Mathematics.
$3
273744
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes on mathematical modelling in the life sciences.
$3
676319
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-19500-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000120136
電子館藏
1圖書
電子書
EB QA377 P468 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-19500-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入