語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The convergence problem for dissipat...
~
Haraux, Alain.
The convergence problem for dissipative autonomous systemsclassical methods and recent advances /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The convergence problem for dissipative autonomous systemsby Alain Haraux, Mohamed Ali Jendoubi.
其他題名:
classical methods and recent advances /
作者:
Haraux, Alain.
其他作者:
Jendoubi, Mohamed Ali.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xii, 142 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Convergence.
電子資源:
http://dx.doi.org/10.1007/978-3-319-23407-6
ISBN:
9783319234076$q(electronic bk.)
The convergence problem for dissipative autonomous systemsclassical methods and recent advances /
Haraux, Alain.
The convergence problem for dissipative autonomous systems
classical methods and recent advances /[electronic resource] :by Alain Haraux, Mohamed Ali Jendoubi. - Cham :Springer International Publishing :2015. - xii, 142 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations -- 4 Uniformly damped linear semi-groups -- 5 Generalities on dynamical systems -- 6 The linearization method -- 7 Gradient-like systems -- 8 Liapunov's second method - invariance principle -- 9 Some basic examples -- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
ISBN: 9783319234076$q(electronic bk.)
Standard No.: 10.1007/978-3-319-23407-6doiSubjects--Topical Terms:
182684
Convergence.
LC Class. No.: QA295
Dewey Class. No.: 515.24
The convergence problem for dissipative autonomous systemsclassical methods and recent advances /
LDR
:02727nmm a2200325 a 4500
001
476967
003
DE-He213
005
20160414165556.0
006
m d
007
cr nn 008maaau
008
160526s2015 gw s 0 eng d
020
$a
9783319234076$q(electronic bk.)
020
$a
9783319234069$q(paper)
024
7
$a
10.1007/978-3-319-23407-6
$2
doi
035
$a
978-3-319-23407-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA295
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.24
$2
23
090
$a
QA295
$b
.H254 2015
100
1
$a
Haraux, Alain.
$3
731775
245
1 4
$a
The convergence problem for dissipative autonomous systems
$h
[electronic resource] :
$b
classical methods and recent advances /
$c
by Alain Haraux, Mohamed Ali Jendoubi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xii, 142 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations -- 4 Uniformly damped linear semi-groups -- 5 Generalities on dynamical systems -- 6 The linearization method -- 7 Gradient-like systems -- 8 Liapunov's second method - invariance principle -- 9 Some basic examples -- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
520
$a
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
650
0
$a
Convergence.
$3
182684
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Functional Analysis.
$3
274845
650
2 4
$a
Operator Theory.
$3
274795
650
2 4
$a
Ordinary Differential Equations.
$3
273778
700
1
$a
Jendoubi, Mohamed Ali.
$3
731776
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23407-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000120186
電子館藏
1圖書
電子書
EB QA295 H254 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-23407-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入