語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fixed point theory in metric type spaces
~
Agarwal, Ravi P.
Fixed point theory in metric type spaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fixed point theory in metric type spacesby Ravi P. Agarwal ... [et al.].
其他作者:
Agarwal, Ravi P.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xvii, 385 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Fixed point theory.
電子資源:
http://dx.doi.org/10.1007/978-3-319-24082-4
ISBN:
9783319240824$q(electronic bk.)
Fixed point theory in metric type spaces
Fixed point theory in metric type spaces
[electronic resource] /by Ravi P. Agarwal ... [et al.]. - Cham :Springer International Publishing :2015. - xvii, 385 p. :ill., digital ;24 cm.
Introduction with a Brief Historical Survey -- Preliminaries -- G-Metric Spaces -- Basic Fixed Point Results in the Setting of G-Metric Spaces -- Fixed Point Theorems in Partially Ordered G-Metric Spaces -- Further Fixed Point Results on G-Metric Spaces -- Fixed Point Theorems via Admissible Mappings -- New Approaches to Fixed Point Results on G-Metric Spaces -- Expansive Mappings -- Reconstruction of G-Metrics: G*-Metrics -- Multidimensional Fixed Point Theorems on G-Metric Spaces -- Recent Motivating Fixed Point Theory.
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
ISBN: 9783319240824$q(electronic bk.)
Standard No.: 10.1007/978-3-319-24082-4doiSubjects--Topical Terms:
206244
Fixed point theory.
LC Class. No.: QA329.9
Dewey Class. No.: 515.7248
Fixed point theory in metric type spaces
LDR
:02687nmm a2200325 a 4500
001
477895
003
DE-He213
005
20160530154746.0
006
m d
007
cr nn 008maaau
008
160614s2015 gw s 0 eng d
020
$a
9783319240824$q(electronic bk.)
020
$a
9783319240800$q(paper)
024
7
$a
10.1007/978-3-319-24082-4
$2
doi
035
$a
978-3-319-24082-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA329.9
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
515.7248
$2
23
090
$a
QA329.9
$b
.F566 2015
245
0 0
$a
Fixed point theory in metric type spaces
$h
[electronic resource] /
$c
by Ravi P. Agarwal ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xvii, 385 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction with a Brief Historical Survey -- Preliminaries -- G-Metric Spaces -- Basic Fixed Point Results in the Setting of G-Metric Spaces -- Fixed Point Theorems in Partially Ordered G-Metric Spaces -- Further Fixed Point Results on G-Metric Spaces -- Fixed Point Theorems via Admissible Mappings -- New Approaches to Fixed Point Results on G-Metric Spaces -- Expansive Mappings -- Reconstruction of G-Metrics: G*-Metrics -- Multidimensional Fixed Point Theorems on G-Metric Spaces -- Recent Motivating Fixed Point Theory.
520
$a
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
650
0
$a
Fixed point theory.
$3
206244
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Numerical Analysis.
$3
275681
650
2 4
$a
Real Functions.
$3
273779
650
2 4
$a
Functional Analysis.
$3
274845
700
1
$a
Agarwal, Ravi P.
$3
209314
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-24082-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000120727
電子館藏
1圖書
電子書
EB QA329.9 F566 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-24082-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入