語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fractional order Darwinian particle ...
~
Couceiro, Micael.
Fractional order Darwinian particle swarm optimizationapplications and evaluation of an evolutionary algorithm /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fractional order Darwinian particle swarm optimizationby Micael Couceiro, Pedram Ghamisi.
其他題名:
applications and evaluation of an evolutionary algorithm /
作者:
Couceiro, Micael.
其他作者:
Ghamisi, Pedram.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
x, 75 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Swarm intelligence.
電子資源:
http://dx.doi.org/10.1007/978-3-319-19635-0
ISBN:
9783319196350$q(electronic bk.)
Fractional order Darwinian particle swarm optimizationapplications and evaluation of an evolutionary algorithm /
Couceiro, Micael.
Fractional order Darwinian particle swarm optimization
applications and evaluation of an evolutionary algorithm /[electronic resource] :by Micael Couceiro, Pedram Ghamisi. - Cham :Springer International Publishing :2016. - x, 75 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
ISBN: 9783319196350$q(electronic bk.)
Standard No.: 10.1007/978-3-319-19635-0doiSubjects--Topical Terms:
237730
Swarm intelligence.
LC Class. No.: Q337.3
Dewey Class. No.: 006.3824
Fractional order Darwinian particle swarm optimizationapplications and evaluation of an evolutionary algorithm /
LDR
:02131nmm a2200325 a 4500
001
480908
003
DE-He213
005
20160707152129.0
006
m
007
cr
008
161007s2016
020
$a
9783319196350$q(electronic bk.)
020
$a
9783319196343$q(paper)
024
7
$a
10.1007/978-3-319-19635-0
$2
doi
035
$a
978-3-319-19635-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q337.3
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3824
$2
23
090
$a
Q337.3
$b
.C853 2016
100
1
$a
Couceiro, Micael.
$3
736599
245
1 0
$a
Fractional order Darwinian particle swarm optimization
$h
[electronic resource] :
$b
applications and evaluation of an evolutionary algorithm /
$c
by Micael Couceiro, Pedram Ghamisi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 75 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
Particle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions.
520
$a
This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science.
650
0
$a
Swarm intelligence.
$3
237730
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Evolution equations.
$3
199049
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Systems Theory, Control.
$3
274654
700
1
$a
Ghamisi, Pedram.
$3
736600
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-19635-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000120745
電子館藏
1圖書
電子書
EB Q337.3 C853 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-19635-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入