語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Technical analysis for algorithmic p...
~
SpringerLink (Online service)
Technical analysis for algorithmic pattern recognition
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Technical analysis for algorithmic pattern recognitionby Prodromos E. Tsinaslanidis, Achilleas D. Zapranis.
作者:
Tsinaslanidis, Prodromos E.
其他作者:
Zapranis, Achilleas D.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xiii, 204 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Technical analysis (Investment analysis)
電子資源:
http://dx.doi.org/10.1007/978-3-319-23636-0
ISBN:
9783319236360$q(electronic bk.)
Technical analysis for algorithmic pattern recognition
Tsinaslanidis, Prodromos E.
Technical analysis for algorithmic pattern recognition
[electronic resource] /by Prodromos E. Tsinaslanidis, Achilleas D. Zapranis. - Cham :Springer International Publishing :2016. - xiii, 204 p. :ill., digital ;24 cm.
Technical Analysis -- Preprocessing Procedures -- Assessing the Predictive Performance of Technical Analysis -- Horizontal Patterns -- Zigzag Patterns -- Circular Patterns -- Technical Indicators -- A Statistical Assessment -- Dynamic Time Warping for Pattern Recognition.
The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA) Particularly, TA is being used either by academics as an "economic test" of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.
ISBN: 9783319236360$q(electronic bk.)
Standard No.: 10.1007/978-3-319-23636-0doiSubjects--Topical Terms:
494394
Technical analysis (Investment analysis)
LC Class. No.: HG4529 / .T756 2016
Dewey Class. No.: 332.632042
Technical analysis for algorithmic pattern recognition
LDR
:02335nmm a2200313 a 4500
001
481418
003
DE-He213
005
20160727144626.0
006
m d
007
cr nn 008maaau
008
161007s2016 gw s 0 eng d
020
$a
9783319236360$q(electronic bk.)
020
$a
9783319236353$q(paper)
024
7
$a
10.1007/978-3-319-23636-0
$2
doi
035
$a
978-3-319-23636-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG4529
$b
.T756 2016
072
7
$a
KFF
$2
bicssc
072
7
$a
BUS027000
$2
bisacsh
082
0 4
$a
332.632042
$2
23
090
$a
HG4529
$b
.T882 2016
100
1
$a
Tsinaslanidis, Prodromos E.
$3
737437
245
1 0
$a
Technical analysis for algorithmic pattern recognition
$h
[electronic resource] /
$c
by Prodromos E. Tsinaslanidis, Achilleas D. Zapranis.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 204 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Technical Analysis -- Preprocessing Procedures -- Assessing the Predictive Performance of Technical Analysis -- Horizontal Patterns -- Zigzag Patterns -- Circular Patterns -- Technical Indicators -- A Statistical Assessment -- Dynamic Time Warping for Pattern Recognition.
520
$a
The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA) Particularly, TA is being used either by academics as an "economic test" of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.
650
0
$a
Technical analysis (Investment analysis)
$3
494394
650
0
$a
Pattern perception.
$3
182522
650
1 4
$a
Finance.
$3
183252
650
2 4
$a
Finance, general.
$3
731054
650
2 4
$a
Econometrics.
$3
182271
650
2 4
$a
Statistics for Business/Economics/Mathematical Finance/Insurance.
$3
274062
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Quantitative Finance.
$3
274071
650
2 4
$a
Macroeconomics/Monetary Economics/Financial Economics.
$3
737439
700
1
$a
Zapranis, Achilleas D.
$3
737438
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23636-0
950
$a
Economics and Finance (Springer-41170)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000121255
電子館藏
1圖書
電子書
EB HG4529 T882 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-23636-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入