語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Link prediction in social networksro...
~
Mitra, Pabitra.
Link prediction in social networksrole of power law distribution /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Link prediction in social networksby Virinchi Srinivas, Pabitra Mitra.
其他題名:
role of power law distribution /
作者:
Srinivas, Virinchi.
其他作者:
Mitra, Pabitra.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
ix, 67 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data mining.
電子資源:
http://dx.doi.org/10.1007/978-3-319-28922-9
ISBN:
9783319289229$q(electronic bk.)
Link prediction in social networksrole of power law distribution /
Srinivas, Virinchi.
Link prediction in social networks
role of power law distribution /[electronic resource] :by Virinchi Srinivas, Pabitra Mitra. - Cham :Springer International Publishing :2016. - ix, 67 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Link Prediction Using Degree Thresholding -- Locally Adaptive Link Prediction -- Two Phase Framework for Link Prediction -- Applications of Link Prediction -- Conclusion.
This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
ISBN: 9783319289229$q(electronic bk.)
Standard No.: 10.1007/978-3-319-28922-9doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Link prediction in social networksrole of power law distribution /
LDR
:02125nmm a2200337 a 4500
001
482712
003
DE-He213
005
20160817133058.0
006
m d
007
cr nn 008maaau
008
161007s2016 gw s 0 eng d
020
$a
9783319289229$q(electronic bk.)
020
$a
9783319289212$q(paper)
024
7
$a
10.1007/978-3-319-28922-9
$2
doi
035
$a
978-3-319-28922-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
S774 2016
100
1
$a
Srinivas, Virinchi.
$3
739584
245
1 0
$a
Link prediction in social networks
$h
[electronic resource] :
$b
role of power law distribution /
$c
by Virinchi Srinivas, Pabitra Mitra.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
ix, 67 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Link Prediction Using Degree Thresholding -- Locally Adaptive Link Prediction -- Two Phase Framework for Link Prediction -- Applications of Link Prediction -- Conclusion.
520
$a
This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
650
0
$a
Data mining.
$3
184440
650
0
$a
Online social networks.
$3
281852
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Computer Communication Networks.
$3
218087
700
1
$a
Mitra, Pabitra.
$3
739585
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
559641
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-28922-9
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000122549
電子館藏
1圖書
電子書
EB QA76.9.D343 S774 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-28922-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入