語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical analysis for high-dimens...
~
(1998 :)
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical analysis for high-dimensional dataedited by Arnoldo Frigessi ... [et al.].
其他題名:
The Abel Symposium 2014 /
其他作者:
Frigessi, Arnoldo.
團體作者:
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xii, 306 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical statistics
電子資源:
http://dx.doi.org/10.1007/978-3-319-27099-9
ISBN:
9783319270999$q(electronic bk.)
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
Statistical analysis for high-dimensional data
The Abel Symposium 2014 /[electronic resource] :edited by Arnoldo Frigessi ... [et al.]. - Cham :Springer International Publishing :2016. - xii, 306 p. :ill., digital ;24 cm. - Abel symposia,112193-2808 ;. - Abel symposia ;9..
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvagar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
ISBN: 9783319270999$q(electronic bk.)
Standard No.: 10.1007/978-3-319-27099-9doiSubjects--Topical Terms:
182294
Mathematical statistics
LC Class. No.: QA276.A1
Dewey Class. No.: 519.5
Statistical analysis for high-dimensional dataThe Abel Symposium 2014 /
LDR
:03405nmm a2200325 a 4500
001
483455
003
DE-He213
005
20160825141909.0
006
m d
007
cr nn 008maaau
008
161007s2016 gw s 0 eng d
020
$a
9783319270999$q(electronic bk.)
020
$a
9783319270975$q(paper)
024
7
$a
10.1007/978-3-319-27099-9
$2
doi
035
$a
978-3-319-27099-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.A1
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA276.A1
$b
S797 2014
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Statistical analysis for high-dimensional data
$h
[electronic resource] :
$b
The Abel Symposium 2014 /
$c
edited by Arnoldo Frigessi ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xii, 306 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Abel symposia,
$x
2193-2808 ;
$v
11
505
0
$a
Some Themes in High-Dimensional Statistics: A. Frigessi et al -- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al -- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al -- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al -- Bayesian Hierarchical Mixture Models: L. Bottelo et al -- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al -- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West -- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al -- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al -- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al -- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al -- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al -- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
520
$a
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvagar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
650
0
$a
Mathematical statistics
$3
182294
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Bioinformatics.
$3
194415
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
700
1
$a
Frigessi, Arnoldo.
$3
741024
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Abel symposia ;
$v
9.
$3
712343
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27099-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000123292
電子館藏
1圖書
電子書
EB QA276.A1 S797 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-27099-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入