語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Topics in grammatical inference
~
Heinz, Jeffrey.
Topics in grammatical inference
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Topics in grammatical inferenceedited by Jeffrey Heinz, Jose M. Sempere.
其他作者:
Heinz, Jeffrey.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg :2016.
面頁冊數:
xvii, 247 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
http://dx.doi.org/10.1007/978-3-662-48395-4
ISBN:
9783662483954$q(electronic bk.)
Topics in grammatical inference
Topics in grammatical inference
[electronic resource] /edited by Jeffrey Heinz, Jose M. Sempere. - Berlin, Heidelberg :Springer Berlin Heidelberg :2016. - xvii, 247 p. :ill. (some col.), digital ;24 cm.
Introduction -- Gold-Style Learning Theory -- Efficiency in the Identification in the Limit Learning Paradigm -- Learning Grammars and Automata with Queries -- On the Inference of Finite State Automata from Positive and Negative Data -- Learning Probability Distributions Generated by Finite-State Machines -- Distributional Learning of Context-Free and Multiple -- Context-Free Grammars -- Learning Tree Languages -- Learning the Language of Biological Sequences.
This book explains advanced theoretical and application-related issues in grammatical inference, a research area inside the inductive inference paradigm for machine learning. The first three chapters of the book deal with issues regarding theoretical learning frameworks; the next four chapters focus on the main classes of formal languages according to Chomsky's hierarchy, in particular regular and context-free languages; and the final chapter addresses the processing of biosequences. The topics chosen are of foundational interest with relatively mature and established results, algorithms and conclusions. The book will be of value to researchers and graduate students in areas such as theoretical computer science, machine learning, computational linguistics, bioinformatics, and cognitive psychology who are engaged with the study of learning, especially of the structure underlying the concept to be learned. Some knowledge of mathematics and theoretical computer science, including formal language theory, automata theory, formal grammars, and algorithmics, is a prerequisite for reading this book.
ISBN: 9783662483954$q(electronic bk.)
Standard No.: 10.1007/978-3-662-48395-4doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.3
Topics in grammatical inference
LDR
:02583nmm a2200337 a 4500
001
489116
003
DE-He213
005
20161024141110.0
006
m d
007
cr nn 008maaau
008
161213s2016 gw s 0 eng d
020
$a
9783662483954$q(electronic bk.)
020
$a
9783662483930$q(paper)
024
7
$a
10.1007/978-3-662-48395-4
$2
doi
035
$a
978-3-662-48395-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UY
$2
bicssc
072
7
$a
UYA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM031000
$2
bisacsh
082
0 4
$a
006.3
$2
23
090
$a
Q325.5
$b
.T674 2016
245
0 0
$a
Topics in grammatical inference
$h
[electronic resource] /
$c
edited by Jeffrey Heinz, Jose M. Sempere.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2016.
300
$a
xvii, 247 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Gold-Style Learning Theory -- Efficiency in the Identification in the Limit Learning Paradigm -- Learning Grammars and Automata with Queries -- On the Inference of Finite State Automata from Positive and Negative Data -- Learning Probability Distributions Generated by Finite-State Machines -- Distributional Learning of Context-Free and Multiple -- Context-Free Grammars -- Learning Tree Languages -- Learning the Language of Biological Sequences.
520
$a
This book explains advanced theoretical and application-related issues in grammatical inference, a research area inside the inductive inference paradigm for machine learning. The first three chapters of the book deal with issues regarding theoretical learning frameworks; the next four chapters focus on the main classes of formal languages according to Chomsky's hierarchy, in particular regular and context-free languages; and the final chapter addresses the processing of biosequences. The topics chosen are of foundational interest with relatively mature and established results, algorithms and conclusions. The book will be of value to researchers and graduate students in areas such as theoretical computer science, machine learning, computational linguistics, bioinformatics, and cognitive psychology who are engaged with the study of learning, especially of the structure underlying the concept to be learned. Some knowledge of mathematics and theoretical computer science, including formal language theory, automata theory, formal grammars, and algorithmics, is a prerequisite for reading this book.
650
0
$a
Machine learning.
$3
188639
650
0
$a
Natural language processing (Computer science)
$3
200539
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Theory of Computation.
$3
274475
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Computational Linguistics.
$3
274669
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
700
1
$a
Heinz, Jeffrey.
$3
747382
700
1
$a
Sempere, Jose M.
$3
492079
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-48395-4
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000126627
電子館藏
1圖書
電子書
EB Q325.5 T674 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-662-48395-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入