語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning scientific programming with...
~
Hill, Christian, (1974-)
Learning scientific programming with Python /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning scientific programming with Python /Christian Hill, University College London and Somerville College, University of Oxford.
作者:
Hill, Christian,
面頁冊數:
1 online resource (vii, 452 pages) :digital, PDF file(s).
附註:
Title from publisher's bibliographic system (viewed on 05 Feb 2016).
標題:
ScienceData processing.
電子資源:
https://doi.org/10.1017/CBO9781139871754
ISBN:
9781139871754 (ebook)
Learning scientific programming with Python /
Hill, Christian,1974-
Learning scientific programming with Python /
Christian Hill, University College London and Somerville College, University of Oxford. - 1 online resource (vii, 452 pages) :digital, PDF file(s).
Title from publisher's bibliographic system (viewed on 05 Feb 2016).
Machine generated contents note: 1. Introduction; 2. The core Python language I; 3. Interlude: simple plotting with Pylab; 4. The core Python language II; 5. IPython and IPython notebook; 6. NumPy; 7. Matplotlib; 8. SciPy; 9. General scientific programming; Appendix A; Solutions; Index.
Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students requiring a solid foundation in Python programming.
ISBN: 9781139871754 (ebook)Subjects--Topical Terms:
180009
Science
--Data processing.
LC Class. No.: Q183.9 / .H58 2015
Dewey Class. No.: 005.13/3
Learning scientific programming with Python /
LDR
:02443nmm a22003018i 4500
001
496737
003
UkCbUP
005
20160216110118.0
006
m|||||o||d||||||||
007
cr||||||||||||
008
170412s2015||||enk o ||1 0|eng|d
020
$a
9781139871754 (ebook)
020
$z
9781107075412 (hardback)
020
$z
9781107428225 (paperback)
035
$a
CR9781139871754
040
$a
UkCbUP
$b
eng
$e
rda
$c
UkCbUP
050
0 0
$a
Q183.9
$b
.H58 2015
082
0 0
$a
005.13/3
$2
23
100
1
$a
Hill, Christian,
$d
1974-
$e
author.
$3
759431
245
1 0
$a
Learning scientific programming with Python /
$c
Christian Hill, University College London and Somerville College, University of Oxford.
264
1
$a
Cambridge :
$b
Cambridge University Press,
$c
2015.
300
$a
1 online resource (vii, 452 pages) :
$b
digital, PDF file(s).
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Title from publisher's bibliographic system (viewed on 05 Feb 2016).
505
8
$a
Machine generated contents note: 1. Introduction; 2. The core Python language I; 3. Interlude: simple plotting with Pylab; 4. The core Python language II; 5. IPython and IPython notebook; 6. NumPy; 7. Matplotlib; 8. SciPy; 9. General scientific programming; Appendix A; Solutions; Index.
520
$a
Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students requiring a solid foundation in Python programming.
650
0
$a
Science
$x
Data processing.
$3
180009
650
0
$a
Science
$x
Mathematics.
$3
203126
650
0
$a
Python (Computer program language)
$3
215247
776
0 8
$i
Print version:
$z
9781107075412
856
4 0
$u
https://doi.org/10.1017/CBO9781139871754
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000132851
電子館藏
1圖書
電子書
EB Q183.9 H645 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781139871754
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入