語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Music through Fourier spacediscrete ...
~
Amiot, Emmanuel.
Music through Fourier spacediscrete Fourier transform in music theory /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Music through Fourier spaceby Emmanuel Amiot.
其他題名:
discrete Fourier transform in music theory /
作者:
Amiot, Emmanuel.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xv, 206 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
MusicMathematics.
電子資源:
http://dx.doi.org/10.1007/978-3-319-45581-5
ISBN:
9783319455815$q(electronic bk.)
Music through Fourier spacediscrete Fourier transform in music theory /
Amiot, Emmanuel.
Music through Fourier space
discrete Fourier transform in music theory /[electronic resource] :by Emmanuel Amiot. - Cham :Springer International Publishing :2016. - xv, 206 p. :ill. (some col.), digital ;24 cm. - Computational music science,1868-0305. - Computational music science..
Discrete Fourier Transform of Distributions -- Homometry and the Phase Retrieval Problem -- Nil Fourier Coefficients and Tilings -- Saliency -- Continuous Spaces, Continuous Fourier Transform -- Phases of Fourier Coefficients.
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
ISBN: 9783319455815$q(electronic bk.)
Standard No.: 10.1007/978-3-319-45581-5doiSubjects--Topical Terms:
737289
Music
--Mathematics.
LC Class. No.: ML3800
Dewey Class. No.: 780.0519
Music through Fourier spacediscrete Fourier transform in music theory /
LDR
:02194nmm a2200349 a 4500
001
498229
003
DE-He213
005
20161026080302.0
006
m d
007
cr nn 008maaau
008
170511s2016 gw s 0 eng d
020
$a
9783319455815$q(electronic bk.)
020
$a
9783319455808$q(paper)
024
7
$a
10.1007/978-3-319-45581-5
$2
doi
035
$a
978-3-319-45581-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
ML3800
072
7
$a
H
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
ART000000
$2
bisacsh
082
0 4
$a
780.0519
$2
23
090
$a
ML3800
$b
.A517 2016
100
1
$a
Amiot, Emmanuel.
$3
761243
245
1 0
$a
Music through Fourier space
$h
[electronic resource] :
$b
discrete Fourier transform in music theory /
$c
by Emmanuel Amiot.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 206 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Computational music science,
$x
1868-0305
505
0
$a
Discrete Fourier Transform of Distributions -- Homometry and the Phase Retrieval Problem -- Nil Fourier Coefficients and Tilings -- Saliency -- Continuous Spaces, Continuous Fourier Transform -- Phases of Fourier Coefficients.
520
$a
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
650
0
$a
Music
$x
Mathematics.
$3
737289
650
0
$a
Fourier transformations.
$3
184270
650
0
$a
Computer science.
$3
199325
650
0
$a
Music.
$3
227185
650
0
$a
Computer science
$x
Mathematics.
$3
181991
650
0
$a
Application software.
$3
200645
650
0
$a
Mathematics.
$3
184409
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Computer Appl. in Arts and Humanities.
$3
274552
650
2 4
$a
Mathematics in Music.
$3
563603
650
2 4
$a
Mathematics of Computing.
$3
273710
650
2 4
$a
User Interfaces and Human Computer Interaction.
$3
274517
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Computational music science.
$3
702665
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45581-5
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000133664
電子館藏
1圖書
電子書
EB ML3800 A517 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-45581-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入