語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Descriptive data mining
~
Olson, David L.
Descriptive data mining
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Descriptive data miningby David L. Olson.
作者:
Olson, David L.
出版者:
Singapore :Springer Singapore :2017.
面頁冊數:
xi, 116 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data mining.
電子資源:
http://dx.doi.org/10.1007/978-981-10-3340-7
ISBN:
9789811033407$q(electronic bk.)
Descriptive data mining
Olson, David L.
Descriptive data mining
[electronic resource] /by David L. Olson. - Singapore :Springer Singapore :2017. - xi, 116 p. :ill., digital ;24 cm. - Computational risk management,2191-1436. - Computational risk management..
Chapter 1 Knowledge Management -- Chapter 2: Data Visualization -- Chapter 3 Market Basket Analysis -- Chapter 4 Recency Frequency and Monetary Model -- Chapter 5 Association Rules -- Chapter 6 Cluster Analysis -- Chapter 7 Link Analysis -- Chapter 7 Link Analysis -- Chapter 8 Descriptive Data Mining -- References -- Index.
This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle) Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph. Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but without detailed references. The data sets and software selected are widely available and can easily be accessed.
ISBN: 9789811033407$q(electronic bk.)
Standard No.: 10.1007/978-981-10-3340-7doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: HD30.2 / .O47 2017
Dewey Class. No.: 006.312
Descriptive data mining
LDR
:02608nmm a2200325 a 4500
001
506100
003
DE-He213
005
20161210124307.0
006
m d
007
cr nn 008maaau
008
171030s2017 si s 0 eng d
020
$a
9789811033407$q(electronic bk.)
020
$a
9789811033391$q(paper)
024
7
$a
10.1007/978-981-10-3340-7
$2
doi
035
$a
978-981-10-3340-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HD30.2
$b
.O47 2017
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS070030
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
HD30.2
$b
.O52 2017
100
1
$a
Olson, David L.
$3
212983
245
1 0
$a
Descriptive data mining
$h
[electronic resource] /
$c
by David L. Olson.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2017.
300
$a
xi, 116 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational risk management,
$x
2191-1436
505
0
$a
Chapter 1 Knowledge Management -- Chapter 2: Data Visualization -- Chapter 3 Market Basket Analysis -- Chapter 4 Recency Frequency and Monetary Model -- Chapter 5 Association Rules -- Chapter 6 Cluster Analysis -- Chapter 7 Link Analysis -- Chapter 7 Link Analysis -- Chapter 8 Descriptive Data Mining -- References -- Index.
520
$a
This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle) Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph. Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but without detailed references. The data sets and software selected are widely available and can easily be accessed.
650
0
$a
Data mining.
$3
184440
650
1 4
$a
Business and Management.
$2
eflch
$3
639169
650
2 4
$a
Big Data/Analytics.
$3
742047
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Risk Management.
$3
297189
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Computational risk management.
$3
681244
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-3340-7
950
$a
Business and Management (Springer-41169)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137035
電子館藏
1圖書
電子書
EB HD30.2 O52 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-10-3340-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入