語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lieb-Robinson bounds for multi-commu...
~
Bru, J.-B.
Lieb-Robinson bounds for multi-commutators and applications to response theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Lieb-Robinson bounds for multi-commutators and applications to response theoryby J.-B. Bru, W. de Siqueira Pedra.
作者:
Bru, J.-B.
其他作者:
Pedra, W. de Siqueira.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
vii, 109 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Quantum theory.
電子資源:
http://dx.doi.org/10.1007/978-3-319-45784-0
ISBN:
9783319457840$q(electronic bk.)
Lieb-Robinson bounds for multi-commutators and applications to response theory
Bru, J.-B.
Lieb-Robinson bounds for multi-commutators and applications to response theory
[electronic resource] /by J.-B. Bru, W. de Siqueira Pedra. - Cham :Springer International Publishing :2017. - vii, 109 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.132197-1757 ;. - SpringerBriefs in mathematical physics ;v.1..
Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb-Robinson Bounds for Multi-Commutators -- Lieb-Robinson Bounds for Non-Autonomous Dynamics -- Applications to Conductivity Measures.
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
ISBN: 9783319457840$q(electronic bk.)
Standard No.: 10.1007/978-3-319-45784-0doiSubjects--Topical Terms:
199020
Quantum theory.
LC Class. No.: QC174.12
Dewey Class. No.: 530.12
Lieb-Robinson bounds for multi-commutators and applications to response theory
LDR
:02549nmm a2200325 a 4500
001
506430
003
DE-He213
005
20161201113634.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319457840$q(electronic bk.)
020
$a
9783319457833$q(paper)
024
7
$a
10.1007/978-3-319-45784-0
$2
doi
035
$a
978-3-319-45784-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.12
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
530.12
$2
23
090
$a
QC174.12
$b
.B886 2017
100
1
$a
Bru, J.-B.
$3
772417
245
1 0
$a
Lieb-Robinson bounds for multi-commutators and applications to response theory
$h
[electronic resource] /
$c
by J.-B. Bru, W. de Siqueira Pedra.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
vii, 109 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.13
505
0
$a
Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb-Robinson Bounds for Multi-Commutators -- Lieb-Robinson Bounds for Non-Autonomous Dynamics -- Applications to Conductivity Measures.
520
$a
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
650
0
$a
Quantum theory.
$3
199020
650
1 4
$a
Physics.
$3
179414
650
2 4
$a
Mathematical Methods in Physics.
$3
273796
650
2 4
$a
Mathematical Physics.
$3
522725
650
2 4
$a
Functional Analysis.
$3
274845
650
2 4
$a
Condensed Matter Physics.
$3
376278
650
2 4
$a
Quantum Information Technology, Spintronics.
$3
379903
700
1
$a
Pedra, W. de Siqueira.
$3
772418
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.1.
$3
683312
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45784-0
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137365
電子館藏
1圖書
電子書
EB QC174.12 B886 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-45784-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入