語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Electrical power unit commitmentdete...
~
Huang, Yuping.
Electrical power unit commitmentdeterministic and two-stage stochastic programming models and algorithms /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Electrical power unit commitmentby Yuping Huang, Panos M. Pardalos, Qipeng P. Zheng.
其他題名:
deterministic and two-stage stochastic programming models and algorithms /
作者:
Huang, Yuping.
其他作者:
Pardalos, Panos M.
出版者:
Boston, MA :Springer US :2017.
面頁冊數:
viii, 93 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Electric powerMathematical models.
電子資源:
http://dx.doi.org/10.1007/978-1-4939-6768-1
ISBN:
9781493967681$q(electronic bk.)
Electrical power unit commitmentdeterministic and two-stage stochastic programming models and algorithms /
Huang, Yuping.
Electrical power unit commitment
deterministic and two-stage stochastic programming models and algorithms /[electronic resource] :by Yuping Huang, Panos M. Pardalos, Qipeng P. Zheng. - Boston, MA :Springer US :2017. - viii, 93 p. :ill., digital ;24 cm. - SpringerBriefs in energy,2191-5520. - SpringerBriefs in energy..
Introduction -- Deterministic Unit Commitment Models and Algorithms -- Two-Stage Stochastic Programming Models and Algorithms -- Nomenclature -- Renewable Energy Scenario Generation.
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques. The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation.
ISBN: 9781493967681$q(electronic bk.)
Standard No.: 10.1007/978-1-4939-6768-1doiSubjects--Topical Terms:
773023
Electric power
--Mathematical models.
LC Class. No.: TK1005
Dewey Class. No.: 621.042
Electrical power unit commitmentdeterministic and two-stage stochastic programming models and algorithms /
LDR
:02182nmm a2200337 a 4500
001
506776
003
DE-He213
005
20170808171538.0
006
m d
007
cr nn 008maaau
008
171030s2017 mau s 0 eng d
020
$a
9781493967681$q(electronic bk.)
020
$a
9781493967667$q(paper)
024
7
$a
10.1007/978-1-4939-6768-1
$2
doi
035
$a
978-1-4939-6768-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK1005
072
7
$a
TH
$2
bicssc
072
7
$a
KNB
$2
bicssc
072
7
$a
BUS070040
$2
bisacsh
082
0 4
$a
621.042
$2
23
090
$a
TK1005
$b
.H874 2017
100
1
$a
Huang, Yuping.
$3
773022
245
1 0
$a
Electrical power unit commitment
$h
[electronic resource] :
$b
deterministic and two-stage stochastic programming models and algorithms /
$c
by Yuping Huang, Panos M. Pardalos, Qipeng P. Zheng.
260
$a
Boston, MA :
$b
Springer US :
$b
Imprint: Springer,
$c
2017.
300
$a
viii, 93 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in energy,
$x
2191-5520
505
0
$a
Introduction -- Deterministic Unit Commitment Models and Algorithms -- Two-Stage Stochastic Programming Models and Algorithms -- Nomenclature -- Renewable Energy Scenario Generation.
520
$a
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques. The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation.
650
0
$a
Electric power
$x
Mathematical models.
$3
773023
650
0
$a
Determinants.
$3
467451
650
1 4
$a
Energy.
$3
212397
650
2 4
$a
Energy Policy, Economics and Management.
$3
511210
650
2 4
$a
Power Electronics, Electrical Machines and Networks.
$3
338660
650
2 4
$a
Energy Technology.
$3
338873
650
2 4
$a
Operations Research, Management Science.
$3
511451
700
1
$a
Pardalos, Panos M.
$3
275700
700
1
$a
Zheng, Qipeng P.
$3
567492
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in energy.
$3
561922
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4939-6768-1
950
$a
Energy (Springer-40367)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137711
電子館藏
1圖書
電子書
EB TK1005 H874 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4939-6768-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入