語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances in neuromorphic hardware ex...
~
SpringerLink (Online service)
Advances in neuromorphic hardware exploiting emerging nanoscale devices
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances in neuromorphic hardware exploiting emerging nanoscale devicesedited by Manan Suri.
其他作者:
Suri, Manan.
出版者:
New Delhi :Springer India :2017.
面頁冊數:
xiii, 210 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science)
電子資源:
http://dx.doi.org/10.1007/978-81-322-3703-7
ISBN:
9788132237037$q(electronic bk.)
Advances in neuromorphic hardware exploiting emerging nanoscale devices
Advances in neuromorphic hardware exploiting emerging nanoscale devices
[electronic resource] /edited by Manan Suri. - New Delhi :Springer India :2017. - xiii, 210 p. :ill., digital ;24 cm. - Cognitive systems monographs,v.311867-4925 ;. - Cognitive systems monographs ;v.16..
Phase Change Memory for Neuromorphics -- Filamentary resistive memory for Neuromorphics -- Metal oxide based memory for Neuromorphics -- Nano Organic Transistors for Neuromorphics -- Neuromorphic System design -- Neuromorphic System and algorithms optimization -- Memristor Technology for Neuromorphics -- PCMO based devices for Neuromorphics -- Resistive Memory for Neuromorphics -- Overall Perspective on Neuromorphic Hardware.
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
ISBN: 9788132237037$q(electronic bk.)
Standard No.: 10.1007/978-81-322-3703-7doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
Advances in neuromorphic hardware exploiting emerging nanoscale devices
LDR
:02423nmm a2200325 a 4500
001
506848
003
DE-He213
005
20170810170831.0
006
m d
007
cr nn 008maaau
008
171030s2017 ii s 0 eng d
020
$a
9788132237037$q(electronic bk.)
020
$a
9788132237013$q(paper)
024
7
$a
10.1007/978-81-322-3703-7
$2
doi
035
$a
978-81-322-3703-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.A244 2017
245
0 0
$a
Advances in neuromorphic hardware exploiting emerging nanoscale devices
$h
[electronic resource] /
$c
edited by Manan Suri.
260
$a
New Delhi :
$b
Springer India :
$b
Imprint: Springer,
$c
2017.
300
$a
xiii, 210 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cognitive systems monographs,
$x
1867-4925 ;
$v
v.31
505
0
$a
Phase Change Memory for Neuromorphics -- Filamentary resistive memory for Neuromorphics -- Metal oxide based memory for Neuromorphics -- Nano Organic Transistors for Neuromorphics -- Neuromorphic System design -- Neuromorphic System and algorithms optimization -- Memristor Technology for Neuromorphics -- PCMO based devices for Neuromorphics -- Resistive Memory for Neuromorphics -- Overall Perspective on Neuromorphic Hardware.
520
$a
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
650
0
$a
Neural networks (Computer science)
$3
181982
650
0
$a
Computer architecture.
$3
183006
650
0
$a
Analog CMOS integrated circuits.
$3
710816
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Circuits and Systems.
$3
274416
650
2 4
$a
User Interfaces and Human Computer Interaction.
$3
274517
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Nanotechnology and Microengineering.
$3
348421
700
1
$a
Suri, Manan.
$3
773108
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Cognitive systems monographs ;
$v
v.16.
$3
559859
856
4 0
$u
http://dx.doi.org/10.1007/978-81-322-3703-7
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137783
電子館藏
1圖書
電子書
EB QA76.87 A244 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-81-322-3703-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入