語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary wind turbine placement ...
~
Luckehe, Daniel.
Evolutionary wind turbine placement optimization with geographical constraints
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Evolutionary wind turbine placement optimization with geographical constraintsby Daniel Luckehe.
作者:
Luckehe, Daniel.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2017.
面頁冊數:
xxii, 195 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Wind powerResearch.
電子資源:
http://dx.doi.org/10.1007/978-3-658-18465-0
ISBN:
9783658184650$q(electronic bk.)
Evolutionary wind turbine placement optimization with geographical constraints
Luckehe, Daniel.
Evolutionary wind turbine placement optimization with geographical constraints
[electronic resource] /by Daniel Luckehe. - Wiesbaden :Springer Fachmedien Wiesbaden :2017. - xxii, 195 p. :ill., digital ;24 cm.
Solving Optimization Problems -- Wind Prediction Model -- Geographical Planning Scenarios -- Constrained Placement Optimization -- Constraint Handling with Penalty Functions -- Advanced Evolutionary Heuristics.
Daniel Luckehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situations. Advanced evolutionary heuristics for the turbine placement optimization create not only highly optimized solutions but also significantly different solutions to give decision-makers optimal choices. As a matter of fact, wind turbines play an important role towards green energy supply. An optimal location is essential to achieve the highest possible energy efficiency. Contents Solving Optimization Problems Wind Prediction Model Geographical Planning Scenarios Constrained Placement Optimization Constraint Handling with Penalty Functions Advanced Evolutionary Heuristics Target Groups Lecturers and students of computer science, especially in optimization methods and renewable energies Natural scientists interested in advanced heuristics The Author Dr. Daniel Luckehe defended his PhD thesis in the PhD program "System Integration of Renewable Energy" at the Carl von Ossietzky University in Oldenburg, Germany. As postdoctoral researcher he conducts research in computational health informatics at the Leibnitz University in Hanover, Germany.
ISBN: 9783658184650$q(electronic bk.)
Standard No.: 10.1007/978-3-658-18465-0doiSubjects--Topical Terms:
785258
Wind power
--Research.
LC Class. No.: TJ820
Dewey Class. No.: 621.45
Evolutionary wind turbine placement optimization with geographical constraints
LDR
:02548nmm a2200325 a 4500
001
515010
003
DE-He213
005
20170529163009.0
006
m d
007
cr nn 008maaau
008
180126s2017 gw s 0 eng d
020
$a
9783658184650$q(electronic bk.)
020
$a
9783658184643$q(paper)
024
7
$a
10.1007/978-3-658-18465-0
$2
doi
035
$a
978-3-658-18465-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ820
072
7
$a
UMA
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
COM018000
$2
bisacsh
082
0 4
$a
621.45
$2
23
090
$a
TJ820
$b
.L941 2017
100
1
$a
Luckehe, Daniel.
$3
785257
245
1 0
$a
Evolutionary wind turbine placement optimization with geographical constraints
$h
[electronic resource] /
$c
by Daniel Luckehe.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Vieweg,
$c
2017.
300
$a
xxii, 195 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Solving Optimization Problems -- Wind Prediction Model -- Geographical Planning Scenarios -- Constrained Placement Optimization -- Constraint Handling with Penalty Functions -- Advanced Evolutionary Heuristics.
520
$a
Daniel Luckehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situations. Advanced evolutionary heuristics for the turbine placement optimization create not only highly optimized solutions but also significantly different solutions to give decision-makers optimal choices. As a matter of fact, wind turbines play an important role towards green energy supply. An optimal location is essential to achieve the highest possible energy efficiency. Contents Solving Optimization Problems Wind Prediction Model Geographical Planning Scenarios Constrained Placement Optimization Constraint Handling with Penalty Functions Advanced Evolutionary Heuristics Target Groups Lecturers and students of computer science, especially in optimization methods and renewable energies Natural scientists interested in advanced heuristics The Author Dr. Daniel Luckehe defended his PhD thesis in the PhD program "System Integration of Renewable Energy" at the Carl von Ossietzky University in Oldenburg, Germany. As postdoctoral researcher he conducts research in computational health informatics at the Leibnitz University in Hanover, Germany.
650
0
$a
Wind power
$x
Research.
$3
785258
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Computing Methodologies.
$3
274528
650
2 4
$a
Sustainable Development.
$3
277403
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
273758
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-18465-0
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000143773
電子館藏
1圖書
電子書
EB TJ820 L941 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-658-18465-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入