語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Breath analysis for medical applications
~
Guo, Dongmin.
Breath analysis for medical applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Breath analysis for medical applicationsby David Zhang, Dongmin Guo, Ke Yan.
作者:
Zhang, David.
其他作者:
Guo, Dongmin.
出版者:
Singapore :Springer Singapore :2017.
面頁冊數:
xiii, 309 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Diagnosis.
電子資源:
http://dx.doi.org/10.1007/978-981-10-4322-2
ISBN:
9789811043222$q(electronic bk.)
Breath analysis for medical applications
Zhang, David.
Breath analysis for medical applications
[electronic resource] /by David Zhang, Dongmin Guo, Ke Yan. - Singapore :Springer Singapore :2017. - xiii, 309 p. :ill. (some col.), digital ;24 cm.
1. Introduction -- 2. Literature Review -- 3. A Novel Breath Acquisition System Design -- 4. An LDA Based Sensor Selection Approach -- 5. Sensor Evaluation in a Breath Acquisition System -- 6. Improving the Transfer Ability of Prediction Models -- 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples -- 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift -- 9. Drift Correction using Maximum Independence Domain Adaptation -- 10. Feature Selection and Analysis on Correlated Breath Data -- 11. Breath Sample Identification by Sparse Representation-based Classification -- 12. Monitor Blood Glucose Levels via Sparse Representation Approach -- 13. Diabetics by Means of Breath Signal Analysis -- 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System -- 16. Book Review and Future Work.
This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection and fusion acquisition scheme. It then presents preprocessing techniques, such as drift removing and feature extraction methods, and uses case studies to explore the classification methods. Lastly it discusses promising research directions and potential medical applications of computerized breath diagnosis. It is a valuable interdisciplinary resource for researchers, professionals and postgraduate students working in various fields, including breath diagnosis, signal processing, pattern recognition, and biometrics.
ISBN: 9789811043222$q(electronic bk.)
Standard No.: 10.1007/978-981-10-4322-2doiSubjects--Topical Terms:
192756
Diagnosis.
LC Class. No.: RC71.6
Dewey Class. No.: 616.075
Breath analysis for medical applications
LDR
:02740nmm a2200313 a 4500
001
517632
003
DE-He213
005
20170623174653.0
006
m d
007
cr nn 008maaau
008
180316s2017 si s 0 eng d
020
$a
9789811043222$q(electronic bk.)
020
$a
9789811043215$q(paper)
024
7
$a
10.1007/978-981-10-4322-2
$2
doi
035
$a
978-981-10-4322-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC71.6
072
7
$a
UBH
$2
bicssc
072
7
$a
MED000000
$2
bisacsh
082
0 4
$a
616.075
$2
23
090
$a
RC71.6
$b
.Z63 2017
100
1
$a
Zhang, David.
$3
470349
245
1 0
$a
Breath analysis for medical applications
$h
[electronic resource] /
$c
by David Zhang, Dongmin Guo, Ke Yan.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2017.
300
$a
xiii, 309 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Introduction -- 2. Literature Review -- 3. A Novel Breath Acquisition System Design -- 4. An LDA Based Sensor Selection Approach -- 5. Sensor Evaluation in a Breath Acquisition System -- 6. Improving the Transfer Ability of Prediction Models -- 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples -- 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift -- 9. Drift Correction using Maximum Independence Domain Adaptation -- 10. Feature Selection and Analysis on Correlated Breath Data -- 11. Breath Sample Identification by Sparse Representation-based Classification -- 12. Monitor Blood Glucose Levels via Sparse Representation Approach -- 13. Diabetics by Means of Breath Signal Analysis -- 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System -- 16. Book Review and Future Work.
520
$a
This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection and fusion acquisition scheme. It then presents preprocessing techniques, such as drift removing and feature extraction methods, and uses case studies to explore the classification methods. Lastly it discusses promising research directions and potential medical applications of computerized breath diagnosis. It is a valuable interdisciplinary resource for researchers, professionals and postgraduate students working in various fields, including breath diagnosis, signal processing, pattern recognition, and biometrics.
650
0
$a
Diagnosis.
$3
192756
650
0
$a
Breath tests.
$3
490200
650
0
$a
Biochemical markers.
$3
195446
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Health Informatics.
$3
274212
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
700
1
$a
Guo, Dongmin.
$3
787317
700
1
$a
Yan, Ke.
$3
787318
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-4322-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000145265
電子館藏
1圖書
電子書
EB RC71.6 Z63 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-10-4322-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入