語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to learning classifier ...
~
Browne, Will N.
Introduction to learning classifier systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Introduction to learning classifier systemsby Ryan J. Urbanowicz, Will N. Browne.
作者:
Urbanowicz, Ryan J.
其他作者:
Browne, Will N.
出版者:
Berlin, Heidelberg :Springer Berlin Heidelberg :2017.
面頁冊數:
xiii, 123 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Learning classifier systems.
電子資源:
http://dx.doi.org/10.1007/978-3-662-55007-6
ISBN:
9783662550076$q(electronic bk.)
Introduction to learning classifier systems
Urbanowicz, Ryan J.
Introduction to learning classifier systems
[electronic resource] /by Ryan J. Urbanowicz, Will N. Browne. - Berlin, Heidelberg :Springer Berlin Heidelberg :2017. - xiii, 123 p. :ill., digital ;24 cm. - SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics,2196-548X. - SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics..
LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs.
This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.
ISBN: 9783662550076$q(electronic bk.)
Standard No.: 10.1007/978-3-662-55007-6doiSubjects--Topical Terms:
790894
Learning classifier systems.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Introduction to learning classifier systems
LDR
:02223nmm a2200337 a 4500
001
521076
003
DE-He213
005
20180313162230.0
006
m d
007
cr nn 008maaau
008
180504s2017 gw s 0 eng d
020
$a
9783662550076$q(electronic bk.)
020
$a
9783662550069$q(paper)
024
7
$a
10.1007/978-3-662-55007-6
$2
doi
035
$a
978-3-662-55007-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.U72 2017
100
1
$a
Urbanowicz, Ryan J.
$3
790892
245
1 0
$a
Introduction to learning classifier systems
$h
[electronic resource] /
$c
by Ryan J. Urbanowicz, Will N. Browne.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2017.
300
$a
xiii, 123 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics,
$x
2196-548X
505
0
$a
LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs.
520
$a
This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners.
650
0
$a
Learning classifier systems.
$3
790894
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Optimization.
$3
274084
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
650
2 4
$a
Control, Robotics, Mechatronics.
$3
339147
650
2 4
$a
Theory of Computation.
$3
274475
700
1
$a
Browne, Will N.
$3
790893
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in intelligent systems, artificial intelligence, multiagent systems, and cognitive robotics.
$3
731238
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-55007-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000146465
電子館藏
1圖書
電子書
EB Q325.5 U72 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-662-55007-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入