語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
hp-Version discontinuous Galerkin me...
~
Cangiani, Andrea.
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshesby Andrea Cangiani ... [et al.].
其他作者:
Cangiani, Andrea.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
viii, 131 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Galerkin methods.
電子資源:
http://dx.doi.org/10.1007/978-3-319-67673-9
ISBN:
9783319676739$q(electronic bk.)
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes
[electronic resource] /by Andrea Cangiani ... [et al.]. - Cham :Springer International Publishing :2017. - viii, 131 p. :ill., digital ;24 cm. - Springerbriefs in mathematics,2191-8198. - Springerbriefs in mathematics..
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.
ISBN: 9783319676739$q(electronic bk.)
Standard No.: 10.1007/978-3-319-67673-9doiSubjects--Topical Terms:
224222
Galerkin methods.
LC Class. No.: QA372
Dewey Class. No.: 518.63
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes
LDR
:02126nmm a2200313 a 4500
001
525312
003
DE-He213
005
20180522153051.0
006
m d
007
cr nn 008maaau
008
180904s2017 gw s 0 eng d
020
$a
9783319676739$q(electronic bk.)
020
$a
9783319676715$q(paper)
024
7
$a
10.1007/978-3-319-67673-9
$2
doi
035
$a
978-3-319-67673-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA372
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
518.63
$2
23
090
$a
QA372
$b
.H872 2017
245
0 0
$a
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes
$h
[electronic resource] /
$c
by Andrea Cangiani ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
viii, 131 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springerbriefs in mathematics,
$x
2191-8198
520
$a
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.
650
0
$a
Galerkin methods.
$3
224222
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
650
2 4
$a
Mathematics of Computing.
$3
273710
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
376743
700
1
$a
Cangiani, Andrea.
$3
797595
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springerbriefs in mathematics.
$3
797559
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-67673-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000148632
電子館藏
1圖書
電子書
EB QA372 .H872 2017 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-67673-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入