語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
PySpark recipesa problem-solution ap...
~
Mishra, Raju Kumar.
PySpark recipesa problem-solution approach with PySpark2 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
PySpark recipesby Raju Kumar Mishra.
其他題名:
a problem-solution approach with PySpark2 /
作者:
Mishra, Raju Kumar.
出版者:
Berkeley, CA :Apress :2018.
面頁冊數:
xxiii, 265 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Python (Computer program language)
電子資源:
http://dx.doi.org/10.1007/978-1-4842-3141-8
ISBN:
9781484231418$q(electronic bk.)
PySpark recipesa problem-solution approach with PySpark2 /
Mishra, Raju Kumar.
PySpark recipes
a problem-solution approach with PySpark2 /[electronic resource] :by Raju Kumar Mishra. - Berkeley, CA :Apress :2018. - xxiii, 265 p. :ill., digital ;24 cm.
Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks -- Chapter 2: Installation -- Chapter 3: Introduction to Python and NumPy -- Chapter 4: Spark Architecture and Resilient Distributed Dataset -- Chapter 5: The Power of Pairs: Paired RDD -- Chapter 6: IO in PySpark -- Chapter 7: Optimizing PySpark and PySpark Streaming -- Chapter 8: PySparkSQL -- Chapter 9: PySpark MLlib and Linear Regression.
Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn: Understand the advanced features of PySpark and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames.
ISBN: 9781484231418$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3141-8doiSubjects--Topical Terms:
215247
Python (Computer program language)
LC Class. No.: QA76.73.P98
Dewey Class. No.: 005.133
PySpark recipesa problem-solution approach with PySpark2 /
LDR
:02127nmm a2200289 a 4500
001
530219
003
DE-He213
005
20180817093343.0
006
m d
007
cr nn 008maaau
008
181107s2018 cau s 0 eng d
020
$a
9781484231418$q(electronic bk.)
020
$a
9781484231401$q(paper)
024
7
$a
10.1007/978-1-4842-3141-8
$2
doi
035
$a
978-1-4842-3141-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
M678 2018
100
1
$a
Mishra, Raju Kumar.
$3
803938
245
1 0
$a
PySpark recipes
$h
[electronic resource] :
$b
a problem-solution approach with PySpark2 /
$c
by Raju Kumar Mishra.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xxiii, 265 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks -- Chapter 2: Installation -- Chapter 3: Introduction to Python and NumPy -- Chapter 4: Spark Architecture and Resilient Distributed Dataset -- Chapter 5: The Power of Pairs: Paired RDD -- Chapter 6: IO in PySpark -- Chapter 7: Optimizing PySpark and PySpark Streaming -- Chapter 8: PySparkSQL -- Chapter 9: PySpark MLlib and Linear Regression.
520
$a
Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn: Understand the advanced features of PySpark and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames.
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
SPARK (Computer program language)
$3
803939
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Programming Techniques.
$3
274470
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-3141-8
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000151861
電子館藏
1圖書
電子書
EB QA76.73.P98 M678 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4842-3141-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入