語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Assessing and improving prediction a...
~
Masters, Timothy.
Assessing and improving prediction and classificationtheory and algorithms in C++ /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Assessing and improving prediction and classificationby Timothy Masters.
其他題名:
theory and algorithms in C++ /
作者:
Masters, Timothy.
出版者:
Berkeley, CA :Apress :2018.
面頁冊數:
xx, 517 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
C++ (Computer program language)
電子資源:
http://dx.doi.org/10.1007/978-1-4842-3336-8
ISBN:
9781484233368$q(electronic bk.)
Assessing and improving prediction and classificationtheory and algorithms in C++ /
Masters, Timothy.
Assessing and improving prediction and classification
theory and algorithms in C++ /[electronic resource] :by Timothy Masters. - Berkeley, CA :Apress :2018. - xx, 517 p. :ill., digital ;24 cm.
Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects.
ISBN: 9781484233368$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3336-8doiSubjects--Topical Terms:
181958
C++ (Computer program language)
LC Class. No.: QA76.73.C153
Dewey Class. No.: 005.133
Assessing and improving prediction and classificationtheory and algorithms in C++ /
LDR
:02029nmm a2200277 a 4500
001
530234
003
DE-He213
005
20180817135025.0
006
m d
007
cr nn 008maaau
008
181107s2018 cau s 0 eng d
020
$a
9781484233368$q(electronic bk.)
020
$a
9781484233351$q(paper)
024
7
$a
10.1007/978-1-4842-3336-8
$2
doi
035
$a
978-1-4842-3336-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.C153
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.C153
$b
M423 2018
100
1
$a
Masters, Timothy.
$3
225583
245
1 0
$a
Assessing and improving prediction and classification
$h
[electronic resource] :
$b
theory and algorithms in C++ /
$c
by Timothy Masters.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xx, 517 p. :
$b
ill., digital ;
$c
24 cm.
520
$a
Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committees, and making use of exogenous information to dynamically choose modeling methodologies. Rigorous statistical techniques for computing confidence in predictions and decisions receive extensive treatment. Finally, the last part of the book is devoted to the use of information theory in evaluating and selecting useful predictors. Special attention is paid to Schreiber's Information Transfer, a recent generalization of Grainger Causality. Well commented C++ code is given for every algorithm and technique. You will: Discover the hidden pitfalls that lurk in the model development process Work with some of the most powerful model enhancement algorithms that have emerged recently Effectively use and incorporate the C++ code in your own data analysis projects Combine classification models to enhance your projects.
650
0
$a
C++ (Computer program language)
$3
181958
650
0
$a
Mathematical models.
$3
182479
650
0
$a
Data mining.
$3
184440
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Probability and Statistics in Computer Science.
$3
274053
650
2 4
$a
Statistics, general.
$3
275684
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-3336-8
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000151876
電子館藏
1圖書
電子書
EB QA76.73.C153 M423 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4842-3336-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入