語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Brainlesionglioma, multiple sclerosi...
~
(1998 :)
Brainlesionglioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Brainlesionedited by Alessandro Crimi ... [et al.].
其他題名:
glioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
其他題名:
MICCAI 2017
其他作者:
Crimi, Alessandro.
團體作者:
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xiii, 517 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
BrainCongresses.Tumors
電子資源:
http://dx.doi.org/10.1007/978-3-319-75238-9
ISBN:
9783319752389$q(electronic bk.)
Brainlesionglioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
Brainlesion
glioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /[electronic resource] :MICCAI 2017edited by Alessandro Crimi ... [et al.]. - Cham :Springer International Publishing :2018. - xiii, 517 p. :ill., digital ;24 cm. - Lecture notes in computer science,106700302-9743 ;. - Lecture notes in computer science ;4891..
Invited Talks -- Dice overlap measures for objects of unknown number: Application to lesion segmentation -- Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials -- Brain Lesion Image Analysis -- Automated Segmentation of Multiple Sclerosis Lesions using Multi-Dimensional Gated Recurrent Units -- Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation -- MARCEL (inter-Modality Ane Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection -- Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks -- Overall Survival Time Prediction for High Grade Gliomas based on Sparse Representation Framework -- Traumatic Brain Lesion Quantication based on Mean Diusivity Changes -- Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries -- Sub-Acute & Chronic Ischemic Stroke Lesion MRI Segmentation -- Brain Tumor Segmentation Using an Adversarial Network -- Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma -- Brain Tumor Image Segmentation -- Deep Learning based Multimodal Brain Tumor Diagnosis -- Multimodal Brain Tumor Segmentation using Ensemble of Forest Method -- Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation -- Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks -- 3D Brain Tumor Segmentation through Integrating Multiple 2D FCNNs -- MRI Brain Tumor Segmentation and Patient Survival Prediction using Random Forests and Fully Convolutional Networks -- Automatic Segmentation and Overall Survival Prediction in Gliomas using Fully Convolutional Neural Network and Texture Analysis -- Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks -- A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor -- Dilated Convolutions for Brain Tumor Segmentation in MRI Scans -- Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation -- TPCNN: Two-phase Patch-based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction -- Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge -- Multi-modal PixelNet for Brain Tumor Segmentation -- Brain Tumor Segmentation using Dense Fully Convolutional Neural Network -- Brain Tumor Segmentation in MRI Scans using Deeply-Supervised Neural Networks -- Brain Tumor Segmentation and Parsing on MRIs using Multiresolution Neural Networks -- Brain Tumor Segmentation using Deep Fully Convolutional Neural Networks -- Glioblastoma and Survival Prediction -- MRI Augmentation via Elastic Registration for Brain Lesions Segmentation -- Cascaded V-Net using ROI masks for brain tumor segmentation -- Brain Tumor Segmentation using a 3D FCN with Multi-Scale Loss -- Brain tumor segmentation using a multi-path CNN based method -- 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences -- Automated Brain Tumor Segmentation on Magnetic Resonance Images (MRIs) and Patient Overall Survival Prediction using Support Vector Machines -- Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation -- Tumor segmentation from multimodal MRI using random forest with superpixel and tensor based feature extraction -- Towards Uncertainty-assisted Brain Tumor Segmentation and Survival Prediction -- Ischemic Stroke Lesion Image Segmentation -- WMH Segmentation Challenge: a Texture-based Classication Approach -- White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.
This book constitutes revised selected papers from the Third International MICCAI Brainlesion Workshop, BrainLes 2017, as well as the International Multimodal Brain Tumor Segmentation, BraTS, and White Matter Hyperintensities, WMH, segmentation challenges, which were held jointly at the Medical Image computing for Computer Assisted Intervention Conference, MICCAI, in Quebec City, Canada, in September 2017. The 40 papers presented in this volume were carefully reviewed and selected from 46 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; and ischemic stroke lesion image segmentation.
ISBN: 9783319752389$q(electronic bk.)
Standard No.: 10.1007/978-3-319-75238-9doiSubjects--Topical Terms:
741776
Brain
--Tumors--Congresses.
LC Class. No.: RC280.B7
Dewey Class. No.: 616.8
Brainlesionglioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
LDR
:05807nmm a2200361 a 4500
001
531700
003
DE-He213
005
20180216113902.0
006
m d
007
cr nn 008maaau
008
181113s2018 gw s 0 eng d
020
$a
9783319752389$q(electronic bk.)
020
$a
9783319752372$q(paper)
024
7
$a
10.1007/978-3-319-75238-9
$2
doi
035
$a
978-3-319-75238-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC280.B7
072
7
$a
UYT
$2
bicssc
072
7
$a
UYQV
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
COM016000
$2
bisacsh
082
0 4
$a
616.8
$2
23
090
$a
RC280.B7
$b
B814 2017
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Brainlesion
$h
[electronic resource] :
$b
glioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
$c
edited by Alessandro Crimi ... [et al.].
246
3
$a
MICCAI 2017
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 517 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
10670
505
0
$a
Invited Talks -- Dice overlap measures for objects of unknown number: Application to lesion segmentation -- Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials -- Brain Lesion Image Analysis -- Automated Segmentation of Multiple Sclerosis Lesions using Multi-Dimensional Gated Recurrent Units -- Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation -- MARCEL (inter-Modality Ane Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection -- Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks -- Overall Survival Time Prediction for High Grade Gliomas based on Sparse Representation Framework -- Traumatic Brain Lesion Quantication based on Mean Diusivity Changes -- Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries -- Sub-Acute & Chronic Ischemic Stroke Lesion MRI Segmentation -- Brain Tumor Segmentation Using an Adversarial Network -- Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma -- Brain Tumor Image Segmentation -- Deep Learning based Multimodal Brain Tumor Diagnosis -- Multimodal Brain Tumor Segmentation using Ensemble of Forest Method -- Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation -- Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks -- 3D Brain Tumor Segmentation through Integrating Multiple 2D FCNNs -- MRI Brain Tumor Segmentation and Patient Survival Prediction using Random Forests and Fully Convolutional Networks -- Automatic Segmentation and Overall Survival Prediction in Gliomas using Fully Convolutional Neural Network and Texture Analysis -- Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks -- A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor -- Dilated Convolutions for Brain Tumor Segmentation in MRI Scans -- Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation -- TPCNN: Two-phase Patch-based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction -- Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge -- Multi-modal PixelNet for Brain Tumor Segmentation -- Brain Tumor Segmentation using Dense Fully Convolutional Neural Network -- Brain Tumor Segmentation in MRI Scans using Deeply-Supervised Neural Networks -- Brain Tumor Segmentation and Parsing on MRIs using Multiresolution Neural Networks -- Brain Tumor Segmentation using Deep Fully Convolutional Neural Networks -- Glioblastoma and Survival Prediction -- MRI Augmentation via Elastic Registration for Brain Lesions Segmentation -- Cascaded V-Net using ROI masks for brain tumor segmentation -- Brain Tumor Segmentation using a 3D FCN with Multi-Scale Loss -- Brain tumor segmentation using a multi-path CNN based method -- 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences -- Automated Brain Tumor Segmentation on Magnetic Resonance Images (MRIs) and Patient Overall Survival Prediction using Support Vector Machines -- Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation -- Tumor segmentation from multimodal MRI using random forest with superpixel and tensor based feature extraction -- Towards Uncertainty-assisted Brain Tumor Segmentation and Survival Prediction -- Ischemic Stroke Lesion Image Segmentation -- WMH Segmentation Challenge: a Texture-based Classication Approach -- White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.
520
$a
This book constitutes revised selected papers from the Third International MICCAI Brainlesion Workshop, BrainLes 2017, as well as the International Multimodal Brain Tumor Segmentation, BraTS, and White Matter Hyperintensities, WMH, segmentation challenges, which were held jointly at the Medical Image computing for Computer Assisted Intervention Conference, MICCAI, in Quebec City, Canada, in September 2017. The 40 papers presented in this volume were carefully reviewed and selected from 46 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; and ischemic stroke lesion image segmentation.
650
0
$a
Brain
$x
Tumors
$v
Congresses.
$3
741776
650
0
$a
Brain
$x
Wounds and injuries
$v
Congresses.
$3
510041
650
0
$a
Cerebrovascular disease
$v
Handbooks, manuals, etc.
$3
445006
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Probability and Statistics in Computer Science.
$3
274053
650
2 4
$a
Health Informatics.
$3
274212
700
1
$a
Crimi, Alessandro.
$3
741775
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-75238-9
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000152581
電子館藏
1圖書
電子書
EB RC280.B7 B814 2017 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-75238-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入