語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical data sciencea guide to bui...
~
SpringerLink (Online service)
Practical data sciencea guide to building the technology stack for turning data lakes into business assets /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Practical data scienceby Andreas Francois Vermeulen.
其他題名:
a guide to building the technology stack for turning data lakes into business assets /
作者:
Vermeulen, Andreas Francois.
出版者:
Berkeley, CA :Apress :2018.
面頁冊數:
xxv, 805 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data structures (Computer science)
電子資源:
http://dx.doi.org/10.1007/978-1-4842-3054-1
ISBN:
9781484230541$q(electronic bk.)
Practical data sciencea guide to building the technology stack for turning data lakes into business assets /
Vermeulen, Andreas Francois.
Practical data science
a guide to building the technology stack for turning data lakes into business assets /[electronic resource] :by Andreas Francois Vermeulen. - Berkeley, CA :Apress :2018. - xxv, 805 p. :ill. (some col.), digital ;24 cm.
Chapter 1: Data Science Technology Stack -- Chapter 2: Vermeulen - Krennwallner - Hillman - Clark -- Chapter 3: Layered Framework -- Chapter 4: Business Layer -- Chapter 5: Utility Layer -- Chapter 6: Three Management Layers -- Chapter 7: Retrieve Super Step -- Chapter 8: Assess Super Step -- Chapter 9: Process Super Step -- Chapter 10: Transform Super Step -- Chapter 11: Organize and Report Super Step.
Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn: Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results.
ISBN: 9781484230541$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3054-1doiSubjects--Topical Terms:
183917
Data structures (Computer science)
LC Class. No.: QA76.9.D35
Dewey Class. No.: 005.73
Practical data sciencea guide to building the technology stack for turning data lakes into business assets /
LDR
:02387nmm a2200325 a 4500
001
532097
003
DE-He213
005
20180222142444.0
006
m d
007
cr nn 008maaau
008
181113s2018 cau s 0 eng d
020
$a
9781484230541$q(electronic bk.)
020
$a
9781484230534$q(paper)
024
7
$a
10.1007/978-1-4842-3054-1
$2
doi
035
$a
978-1-4842-3054-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D35
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
005.73
$2
23
090
$a
QA76.9.D35
$b
V524 2018
100
1
$a
Vermeulen, Andreas Francois.
$3
806946
245
1 0
$a
Practical data science
$h
[electronic resource] :
$b
a guide to building the technology stack for turning data lakes into business assets /
$c
by Andreas Francois Vermeulen.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xxv, 805 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1: Data Science Technology Stack -- Chapter 2: Vermeulen - Krennwallner - Hillman - Clark -- Chapter 3: Layered Framework -- Chapter 4: Business Layer -- Chapter 5: Utility Layer -- Chapter 6: Three Management Layers -- Chapter 7: Retrieve Super Step -- Chapter 8: Assess Super Step -- Chapter 9: Process Super Step -- Chapter 10: Transform Super Step -- Chapter 11: Organize and Report Super Step.
520
$a
Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn: Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results.
650
0
$a
Data structures (Computer science)
$3
183917
650
0
$a
Database management.
$3
182428
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Big Data/Analytics.
$3
742047
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Data Storage Representation.
$3
277024
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4842-3054-1
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000152978
電子館藏
1圖書
電子書
EB QA76.9.D35 V524 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4842-3054-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入