語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Errors-in-variables methods in syste...
~
Soderstrom, Torsten.
Errors-in-variables methods in system identification
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Errors-in-variables methods in system identificationby Torsten Soderstrom.
作者:
Soderstrom, Torsten.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xxvii, 485 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Errors-in-variables models.
電子資源:
http://dx.doi.org/10.1007/978-3-319-75001-9
ISBN:
9783319750019$q(electronic bk.)
Errors-in-variables methods in system identification
Soderstrom, Torsten.
Errors-in-variables methods in system identification
[electronic resource] /by Torsten Soderstrom. - Cham :Springer International Publishing :2018. - xxvii, 485 p. :ill. (some col.), digital ;24 cm. - Communications and control engineering,0178-5354. - Communications and control engineering..
Chapter 1. Introduction -- Chapter 2. The Static Case -- Chapter 3. The Errors-in-Variables Problem for Dynamic Systems -- Chapter 4. Identifiability Aspects -- Chapter 5. Modeling Aspects -- Chapter 6. Elementary Methods -- Chapter 7. Methods Based on Bias-Compensation -- Chapter 8. Covariance Matching -- Chapter 9. Prediction Error and Maximum Likelihood Methods -- Chapter 10. Frequency Domain Methods -- Chapter 11. Total Least Squares -- Chapter 12. Methods for Periodic Data -- Chapter 13. Algorithmic Properties -- Chapter 14. Asymptotic Distributions -- Chapter 15. Errors-in-Variables Problems in Practice -- Index -- References.
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
ISBN: 9783319750019$q(electronic bk.)
Standard No.: 10.1007/978-3-319-75001-9doiSubjects--Topical Terms:
713273
Errors-in-variables models.
LC Class. No.: QA275 / .S865 2018
Dewey Class. No.: 511.43
Errors-in-variables methods in system identification
LDR
:03810nmm a2200325 a 4500
001
533715
003
DE-He213
005
20180927094258.0
006
m d
007
cr nn 008maaau
008
181205s2018 gw s 0 eng d
020
$a
9783319750019$q(electronic bk.)
020
$a
9783319750002$q(paper)
024
7
$a
10.1007/978-3-319-75001-9
$2
doi
035
$a
978-3-319-75001-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA275
$b
.S865 2018
072
7
$a
TJFM
$2
bicssc
072
7
$a
TEC004000
$2
bisacsh
082
0 4
$a
511.43
$2
23
090
$a
QA275
$b
.S679 2018
100
1
$a
Soderstrom, Torsten.
$3
809567
245
1 0
$a
Errors-in-variables methods in system identification
$h
[electronic resource] /
$c
by Torsten Soderstrom.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xxvii, 485 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Communications and control engineering,
$x
0178-5354
505
0
$a
Chapter 1. Introduction -- Chapter 2. The Static Case -- Chapter 3. The Errors-in-Variables Problem for Dynamic Systems -- Chapter 4. Identifiability Aspects -- Chapter 5. Modeling Aspects -- Chapter 6. Elementary Methods -- Chapter 7. Methods Based on Bias-Compensation -- Chapter 8. Covariance Matching -- Chapter 9. Prediction Error and Maximum Likelihood Methods -- Chapter 10. Frequency Domain Methods -- Chapter 11. Total Least Squares -- Chapter 12. Methods for Periodic Data -- Chapter 13. Algorithmic Properties -- Chapter 14. Asymptotic Distributions -- Chapter 15. Errors-in-Variables Problems in Practice -- Index -- References.
520
$a
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.
650
0
$a
Errors-in-variables models.
$3
713273
650
0
$a
System identification.
$3
182015
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Control.
$3
349080
650
2 4
$a
Systems Theory, Control.
$3
274654
650
2 4
$a
Communications Engineering, Networks.
$3
273745
650
2 4
$a
Computer Communication Networks.
$3
218087
650
2 4
$a
Statistical Theory and Methods.
$3
274054
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Communications and control engineering.
$3
558655
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-75001-9
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000154305
電子館藏
1圖書
電子書
EB QA275 .S679 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-75001-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入