語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances in artificial pancreas syst...
~
Cinar, Ali.
Advances in artificial pancreas systemsadaptive and multivariable predictive control /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances in artificial pancreas systemsby Ali Cinar, Kamuran Turksoy.
其他題名:
adaptive and multivariable predictive control /
作者:
Cinar, Ali.
其他作者:
Turksoy, Kamuran.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xii, 119 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Biomedical engineering.
電子資源:
http://dx.doi.org/10.1007/978-3-319-72245-0
ISBN:
9783319722450$q(electronic bk.)
Advances in artificial pancreas systemsadaptive and multivariable predictive control /
Cinar, Ali.
Advances in artificial pancreas systems
adaptive and multivariable predictive control /[electronic resource] :by Ali Cinar, Kamuran Turksoy. - Cham :Springer International Publishing :2018. - xii, 119 p. :ill., digital ;24 cm. - SpringerBriefs in bioengineering,2193-097X. - SpringerBriefs in bioengineering..
Introduction -- Physiology and Factors Affecting Blood Glucose Concentration -- Components of an Artificial Pancreas -- Modeling Glucose Concentration Dynamics -- Hypoglycemia Alarm Systems -- Hyperglycemia Alarm Systems -- Various Control Philosophies and Algorithms -- Multivariable Control of Glucose Concentration -- Dual Hormone Techniques for AP Systems -- Integrated Hypo-/Hyperglycemia Alarm and Control Systems -- Future Developments.
This brief introduces recursive modeling techniques that take account of variations in blood glucose concentration within and between individuals. It describes their use in developing multivariable models in early-warning systems for hypo- and hyperglycemia; these models are more accurate than those solely reliant on glucose and insulin concentrations because they can accommodate other relevant influences like physical activity, stress and sleep. Such factors also contribute to the accuracy of the adaptive control systems present in the artificial pancreas which is the focus of the brief, as their presence is indicated before they have an apparent effect on the glucose concentration and so can be more easily compensated. The adaptive controller is based on generalized predictive control techniques and also includes rules for changing controller parameters or structure based on the values of physiological variables. Simulation studies and clinical studies are reported to illustrate the performance of the techniques presented.
ISBN: 9783319722450$q(electronic bk.)
Standard No.: 10.1007/978-3-319-72245-0doiSubjects--Topical Terms:
190330
Biomedical engineering.
LC Class. No.: R857.P36 / C56 2018
Dewey Class. No.: 617.95
Advances in artificial pancreas systemsadaptive and multivariable predictive control /
LDR
:02521nmm a2200325 a 4500
001
533768
003
DE-He213
005
20180927143817.0
006
m d
007
cr nn 008maaau
008
181205s2018 gw s 0 eng d
020
$a
9783319722450$q(electronic bk.)
020
$a
9783319722443$q(paper)
024
7
$a
10.1007/978-3-319-72245-0
$2
doi
035
$a
978-3-319-72245-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
R857.P36
$b
C56 2018
072
7
$a
MQW
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
082
0 4
$a
617.95
$2
23
090
$a
R857.P36
$b
C574 2018
100
1
$a
Cinar, Ali.
$3
378688
245
1 0
$a
Advances in artificial pancreas systems
$h
[electronic resource] :
$b
adaptive and multivariable predictive control /
$c
by Ali Cinar, Kamuran Turksoy.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xii, 119 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in bioengineering,
$x
2193-097X
505
0
$a
Introduction -- Physiology and Factors Affecting Blood Glucose Concentration -- Components of an Artificial Pancreas -- Modeling Glucose Concentration Dynamics -- Hypoglycemia Alarm Systems -- Hyperglycemia Alarm Systems -- Various Control Philosophies and Algorithms -- Multivariable Control of Glucose Concentration -- Dual Hormone Techniques for AP Systems -- Integrated Hypo-/Hyperglycemia Alarm and Control Systems -- Future Developments.
520
$a
This brief introduces recursive modeling techniques that take account of variations in blood glucose concentration within and between individuals. It describes their use in developing multivariable models in early-warning systems for hypo- and hyperglycemia; these models are more accurate than those solely reliant on glucose and insulin concentrations because they can accommodate other relevant influences like physical activity, stress and sleep. Such factors also contribute to the accuracy of the adaptive control systems present in the artificial pancreas which is the focus of the brief, as their presence is indicated before they have an apparent effect on the glucose concentration and so can be more easily compensated. The adaptive controller is based on generalized predictive control techniques and also includes rules for changing controller parameters or structure based on the values of physiological variables. Simulation studies and clinical studies are reported to illustrate the performance of the techniques presented.
650
0
$a
Biomedical engineering.
$3
190330
650
0
$a
Endocrinology.
$3
196517
650
0
$a
Automatic control.
$3
182078
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Biomedical Engineering.
$3
190464
650
2 4
$a
Control.
$3
349080
700
1
$a
Turksoy, Kamuran.
$3
809625
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in bioengineering.
$3
678563
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-72245-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000154358
電子館藏
1圖書
電子書
EB R857.P36 C574 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-72245-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入