語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Neural network methods for natural l...
~
Goldberg, Yoav, (1980-)
Neural network methods for natural language processing /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Neural network methods for natural language processing /Yoav Goldberg
作者:
Goldberg, Yoav,
面頁冊數:
1 online resource (xxii, 287 pages) :illustrations (some color)
標題:
Natural language processing (Computer science)
電子資源:
http://portal.igpublish.com/iglibrary/search/MCPB0000900.html
ISBN:
9781627052955$q(electronic bk.)
Neural network methods for natural language processing /
Goldberg, Yoav,1980-
Neural network methods for natural language processing /
Yoav Goldberg - 1 online resource (xxii, 287 pages) :illustrations (some color) - Synthesis lectures on human language technologies,#371947-4059 ; . - Synthesis lectures on human language technologies ;#1. .
Includes bibliographical references (pages 253-285)
1. Introduction -- 1.1 The challenges of natural language processing -- 1.2 Neural networks and deep learning -- 1.3 Deep learning in NLP -- 1.3.1 Success stories -- 1.4 Coverage and organization -- 1.5 What's not covered -- 1.6 A note on terminology -- 1.7 Mathematical notation --
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models
ISBN: 9781627052955$q(electronic bk.)
Standard No.: 10.2200 / S00762ED1V01Y201703HLT037doiSubjects--Topical Terms:
200539
Natural language processing (Computer science)
Subjects--Index Terms:
natural language processingIndex Terms--Genre/Form:
298895
Electronic books
LC Class. No.: QA76.9.N38 / G655 2017
Dewey Class. No.: 006.35
Neural network methods for natural language processing /
LDR
:11520nmm0a2200697 ib450
001
535748
005
20181023211640.0
006
m o d
007
cr cnu---unuuu
008
181217t20172017caua fob 000 0 eng d
020
$a
9781627052955$q(electronic bk.)
020
$a
162705295X$q(electronic bk.)
020
$z
9781627052986$q(print)
020
$z
1627052984
024
7
$a
10.2200 / S00762ED1V01Y201703HLT037
$2
doi
035
$a
IGP290258
040
$a
CaBNVSL
$b
eng
$e
rda
$e
pn
$c
J2I
$d
J2I
$d
$d
UUM
$d
BTCTA
$d
OCLCF
$d
OCLCO
$d
NTBC
050
4
$a
QA76.9.N38
$b
G655 2017
082
0 4
$a
006.35
$2
23
100
1
$a
Goldberg, Yoav,
$d
1980-
$e
author
$3
805097
245
1 0
$a
Neural network methods for natural language processing /
$c
Yoav Goldberg
264
1
$a
[San Rafael, California] :
$b
Morgan & Claypool Publishers,
$c
[2017]
264
4
$c
c2017
300
$a
1 online resource (xxii, 287 pages) :
$b
illustrations (some color)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
0
$a
Synthesis lectures on human language technologies,
$x
1947-4059 ;
$v
#37
504
$a
Includes bibliographical references (pages 253-285)
505
0
$a
1. Introduction -- 1.1 The challenges of natural language processing -- 1.2 Neural networks and deep learning -- 1.3 Deep learning in NLP -- 1.3.1 Success stories -- 1.4 Coverage and organization -- 1.5 What's not covered -- 1.6 A note on terminology -- 1.7 Mathematical notation --
505
8
$a
Part I. Supervised classification and feed-forward neural networks -- 2. Learning basics and linear models -- 2.1 Supervised learning and parameterized functions -- 2.2 Train, test, and validation sets -- 2.3 Linear models -- 2.3.1 Binary classification -- 2.3.2 Log-linear binary classification -- 2.3.3 Multi-class classification -- 2.4 Representations -- 2.5 One-hot and dense vector representations -- 2.6 Log-linear multi-class classification -- 2.7 Training as optimization -- 2.7.1 Loss functions -- 2.7.2 Regularization -- 2.8 Gradient-based optimization -- 2.8.1 Stochastic gradient descent -- 2.8.2 Worked -out example -- 2.8.3 Beyond SGD --
505
8
$a
3. From linear models to multi-layer perceptrons -- 3.1 Limitations of linear models: The XOR problem -- 3.2 Nonlinear input transformations -- 3.3 Kernel methods -- 3.4 Trainable mapping functions --
505
8
$a
4. Feed-forward neural networks -- 4.1 A brain-inspired metaphor -- 4.2 In mathematical notation -- 4.3 Representation power -- 4.4 Common nonlinearities -- 4.5 Loss functions -- 4.6 Regularization and dropout -- 4.7 Similarity and distance layers -- 4.8 Embedding layers --
505
8
$a
5. Neural network training -- 5.1 The computation graph abstraction -- 5.1.1 Forward computation -- 5.1.2 Backward computation (derivatives, backprop) -- 5.1.3 Software -- 5.1.4 Implementation recipe -- 5.1.5 Network composition -- 5.2 Practicalities -- 5.2.1 Choice of optimization algorithm -- 5.2.2 Initialization -- 5.2.3 Restarts and ensembles -- 5.2.4 Vanishing and exploding gradients -- 5.2.5 Saturation and dead neurons -- 5.2.6 Shuffling -- 5.2.7 Learning rate -- 5.2.8 Minibatches --
505
8
$a
Part II. Working with natural language data -- 6. Features for textual data -- 6.1 Typology of NLP classification problems -- 6.2 Features for NLP problems -- 6.2.1 Directly observable properties -- 6.2.2 Inferred linguistic properties -- 6.2.3 Core features vs. combination features -- 6.2.4 Ngram features -- 6.2.5 Distributional features --
505
8
$a
7. Case studies of NLP features -- 7.1 Document classification: language identification -- 7.2 Document classification: topic classification -- 7.3 Document classification: authorship attribution -- 7.4 Word-in-context: part of speech tagging -- 7.5 Word-in-context: named entity recognition -- 7.6 Word in context, linguistic features: preposition sense disambiguation -- 7.7 Relation between words in context: arc-factored parsing --
505
8
$a
8. From textual features to inputs -- 8.1 Encoding categorical features -- 8.1.1 One-hot encodings -- 8.1.2 Dense encodings (feature embeddings) -- 8.1.3 Dense vectors vs. one-hot representations -- 8.2 Combining dense vectors -- 8.2.1 Window- based features -- 8.2.2 Variable number of features: continuous bag of words -- 8.3 Relation between one-hot and dense vectors -- 8.4 Odds and ends -- 8.4.1 Distance and position features -- 8.4.2 Padding, unknown words, and word dropout -- 8.4.3 Feature combinations -- 8.4.4 Vector sharing -- 8.4.5 Dimensionality -- 8.4.6 Embeddings vocabulary -- 8.4.7 Network's output -- 8.5 Example: part-of-speech tagging -- 8.6 Example: arc-factored parsing --
505
8
$a
9. Language modeling -- 9.1 The language modeling task -- 9.2 Evaluating language models: perplexity -- 9.3 Traditional approaches to language modeling -- 9.3.1 Further reading -- 9.3.2 Limitations of traditional language models -- 9.4 Neural language models -- 9.5 Using language models for generation -- 9.6 Byproduct: word representations --
505
8
$a
10. Pre-trained word representations -- 10.1 Random initialization -- 10.2 Supervised task-specific pre-training -- 10.3 Unsupervised pre-training -- 10.3.1 Using pre-trained embeddings -- 10.4 Word embedding algorithms -- 10.4.1 Distributional hypothesis and word representations -- 10.4.2 From neural language models to distributed representations -- 10.4.3 Connecting the worlds -- 10.4.4 Other algorithms -- 10.5 The choice of contexts -- 10.5.1 Window approach -- 10.5.2 Sentences, paragraphs, or documents -- 10.5.3 Syntactic window -- 10.5.4 Multilingual -- 10.5.5 Character-based and sub-word representations -- 10.6 Dealing with multi-word units and word inflections -- 10.7 Limitations of distributional methods --
505
8
$a
11. Using word embeddings -- 11.1 Obtaining word vectors -- 11.2 Word similarity -- 11.3 Word clustering -- 11.4 Finding similar words -- 11.4.1 Similarity to a group of words -- 11.5 Odd-one out -- 11.6 Short document similarity -- 11.7 Word analogies -- 11.8 Retrofitting and projections -- 11.9 Practicalities and pitfalls --
505
8
$a
12. Case study: a feed-forward architecture for sentence meaning inference -- 12.1 Natural language inference and the SNLI dataset -- 12.2 A textual similarity network --
505
8
$a
Part III. Specialized architectures -- 13. Ngram detectors: convolutional neural networks -- 13.1 Basic convolution + pooling -- 13.1.1 1D convolutions over text -- 13.1.2 Vector pooling -- 13.1.3 Variations -- 13.2 Alternative: feature hashing -- 13.3 Hierarchical convolutions --
505
8
$a
14. Recurrent neural networks: modeling sequences and stacks -- 14.1 The RNN abstraction -- 14.2 RNN training -- 14.3 Common RNN usage-patterns -- 14.3.1 Acceptor -- 14.3.2 Encoder -- 14.3.3 Transducer -- 14.4 Bidirectional RNNs (biRNN) -- 14.5 Multi-layer (stacked) RNNs -- 14.6 RNNs for representing stacks -- 14.7 A note on reading the literature --
505
8
$a
15. Concrete recurrent neural network architectures -- 15.1 CBOW as an RNN -- 15.2 Simple RNN -- 15.3 Gated architectures -- 15.3.1 LSTM -- 15.3.2 GRU -- 15.4 Other variants -- 15.5 Dropout in RNNs --
505
8
$a
16. Modeling with recurrent networks -- 16.1 Acceptors -- 16.1.1 Sentiment classification -- 16.1.2 Subject-verb agreement grammaticality detection -- 16.2 RNNs as feature extractors -- 16.2.1 Part-of-speech tagging -- 16.2.2 RNN-CNN document classification -- 16.2.3 Arc-factored dependency parsing --
505
8
$a
17. Conditioned generation -- 17.1 RNN generators -- 17.1.1 Training generators -- 17.2 Conditioned generation (encoder- decoder) -- 17.2.1 Sequence to sequence models -- 17.2.2 Applications -- 17.2.3 Other conditioning contexts -- 17.3 Unsupervised sentence similarity -- 17.4 Conditioned generation with attention -- 17.4.1 Computational complexity -- 17.4.2 Interpretability -- 17.5 Attention-based models in NLP -- 17.5.1 Machine translation -- 17.5.2 Morphological inflection -- 17.5.3 Syntactic parsing --
505
8
$a
Part IV. Additional topics -- 18. Modeling trees with recursive neural networks -- 18.1 Formal definition -- 18.2 Extensions and variations -- 18.3 Training recursive neural networks -- 18.4 A simple alternative-linearized trees -- 18.5 Outlook --
505
8
$a
19. Structured output prediction -- 19.1 Search-based structured prediction -- 19.1.1 Structured prediction with linear models -- 19.1.2 Nonlinear structured prediction -- 19.1.3 Probabilistic objective (CRF) -- 19.1.4 Approximate search -- 19.1.5 Reranking -- 19.1.6 See also -- 19.2 Greedy structured prediction -- 19.3 Conditional generation as structured output prediction -- 19.4 Examples -- 19.4.1 Search-based structured prediction: first-order dependency parsing -- 19.4.2 Neural-CRF for named entity recognition -- 19.4.3 Approximate NER-CRF with beam-search --
505
8
$a
20. Cascaded, multi-task and semi-supervised learning -- 20.1 Model cascading -- 20.2 Multi-task learning -- 20.2.1 Training in a multi-task setup -- 20.2.2 Selective sharing -- 20.2.3 Word- embeddings pre-training as multi-task learning -- 20.2.4 Multi- task learning in conditioned generation -- 20.2.5 Multi-task learning as regularization -- 20.2.6 Caveats -- 20.3 Semi- supervised learning -- 20.4 Examples -- 20.4.1 Gaze-prediction and sentence compression -- 20.4.2 Arc labeling and syntactic parsing -- 20.4.3 Preposition sense disambiguation and preposition translation prediction -- 20.4.4 Conditioned generation: multilingual machine translation, parsing, and image captioning -- 20.5 Outlook --
505
8
$a
21. Conclusion -- 21.1 What have we seen? -- 21.2 The challenges ahead -- Bibliography -- Author's biography
520
$a
Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models
520
$a
These architectures and techniques are the driving force behind state- of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning
588
$a
Online resource; title from PDF title page (Morgan & Claypool, viewed on April 18, 2017)
650
0
$a
Natural language processing (Computer science)
$3
200539
650
0
$a
Neural networks (Computer science)
$3
264997
653
$a
natural language processing
653
$a
machine learning
653
$a
supervised learning
653
$a
deep learning
653
$a
neural networks
653
$a
word embeddings
653
$a
recurrent neural networks
653
$a
sequence to sequence models
655
4
$a
Electronic books
$2
local.
$3
298895
776
0 8
$i
Print version:
$a
Goldberg, Yoav, 1980-
$t
Neural network methods for natural language processing.
$d
[San Rafael, California] : Morgan & Claypool, [2017]
$z
1627052984
$w
(OCoLC)984742946
830
0
$a
Synthesis lectures on human language technologies ;
$v
#1.
$3
562979
856
4 0
$u
http://portal.igpublish.com/iglibrary/search/MCPB0000900.html
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000156490
電子館藏
1圖書
電子書
EB QA76.9.N38 G655 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://portal.igpublish.com/iglibrary/search/MCPB0000900.html
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入