語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learninga practical approach...
~
Mello, Rodrigo Fernandes de.
Machine learninga practical approach on the statistical learning theory /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learningby Rodrigo Fernandes de Mello, Moacir Antonelli Ponti.
其他題名:
a practical approach on the statistical learning theory /
作者:
Mello, Rodrigo Fernandes de.
其他作者:
Ponti, Moacir Antonelli.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xv, 362 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
http://dx.doi.org/10.1007/978-3-319-94989-5
ISBN:
9783319949895$q(electronic bk.)
Machine learninga practical approach on the statistical learning theory /
Mello, Rodrigo Fernandes de.
Machine learning
a practical approach on the statistical learning theory /[electronic resource] :by Rodrigo Fernandes de Mello, Moacir Antonelli Ponti. - Cham :Springer International Publishing :2018. - xv, 362 p. :ill., digital ;24 cm.
Chapter 1 - A Brief Review on Machine Learning -- Chapter 2 - Statistical Learning Theory -- Chapter 3 - Assessing Learning Algorithms -- Chapter 4 - Introduction to Support Vector Machines -- Chapter 5 - In Search for the Optimization Algorithm -- Chapter 6 - A Brief Introduction on Kernels.
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
ISBN: 9783319949895$q(electronic bk.)
Standard No.: 10.1007/978-3-319-94989-5doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learninga practical approach on the statistical learning theory /
LDR
:02777nmm a2200325 a 4500
001
542783
003
DE-He213
005
20180801182859.0
006
m d
007
cr nn 008maaau
008
190411s2018 gw s 0 eng d
020
$a
9783319949895$q(electronic bk.)
020
$a
9783319949888$q(paper)
024
7
$a
10.1007/978-3-319-94989-5
$2
doi
035
$a
978-3-319-94989-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M527 2018
100
1
$a
Mello, Rodrigo Fernandes de.
$3
820690
245
1 0
$a
Machine learning
$h
[electronic resource] :
$b
a practical approach on the statistical learning theory /
$c
by Rodrigo Fernandes de Mello, Moacir Antonelli Ponti.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xv, 362 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1 - A Brief Review on Machine Learning -- Chapter 2 - Statistical Learning Theory -- Chapter 3 - Assessing Learning Algorithms -- Chapter 4 - Introduction to Support Vector Machines -- Chapter 5 - In Search for the Optimization Algorithm -- Chapter 6 - A Brief Introduction on Kernels.
520
$a
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Probability and Statistics in Computer Science.
$3
274053
650
2 4
$a
Mathematical Applications in Computer Science.
$3
530811
650
2 4
$a
Applied Statistics.
$3
805583
700
1
$a
Ponti, Moacir Antonelli.
$3
820691
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-94989-5
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000160906
電子館藏
1圖書
電子書
EB Q325.5 M527 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-94989-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入