語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Textual and visual information retri...
~
Shaila, S. G.
Textual and visual information retrieval using query refinement and pattern analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Textual and visual information retrieval using query refinement and pattern analysisby S. G. Shaila, A. Vadivel.
作者:
Shaila, S. G.
其他作者:
Vadivel, A.
出版者:
Singapore :Springer Singapore :2018.
面頁冊數:
xxvi, 123 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Information retrieval.
電子資源:
https://doi.org/10.1007/978-981-13-2559-5
ISBN:
9789811325595$q(electronic bk.)
Textual and visual information retrieval using query refinement and pattern analysis
Shaila, S. G.
Textual and visual information retrieval using query refinement and pattern analysis
[electronic resource] /by S. G. Shaila, A. Vadivel. - Singapore :Springer Singapore :2018. - xxvi, 123 p. :ill., digital ;24 cm.
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book's overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
ISBN: 9789811325595$q(electronic bk.)
Standard No.: 10.1007/978-981-13-2559-5doiSubjects--Topical Terms:
215224
Information retrieval.
LC Class. No.: ZA3075
Dewey Class. No.: 025.04
Textual and visual information retrieval using query refinement and pattern analysis
LDR
:02417nmm a2200337 a 4500
001
544500
003
DE-He213
005
20180930021250.0
006
m d
007
cr nn 008maaau
008
190508s2018 si s 0 eng d
020
$a
9789811325595$q(electronic bk.)
020
$a
9789811325588$q(paper)
024
7
$a
10.1007/978-981-13-2559-5
$2
doi
035
$a
978-981-13-2559-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
ZA3075
072
7
$a
UNH
$2
bicssc
072
7
$a
COM030000
$2
bisacsh
072
7
$a
UNH
$2
thema
072
7
$a
UND
$2
thema
082
0 4
$a
025.04
$2
23
090
$a
ZA3075
$b
.S526 2018
100
1
$a
Shaila, S. G.
$3
823064
245
1 0
$a
Textual and visual information retrieval using query refinement and pattern analysis
$h
[electronic resource] /
$c
by S. G. Shaila, A. Vadivel.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2018.
300
$a
xxvi, 123 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. Architecture Specification of Rule-Based Deep Web Crawler with Indexer -- Chapter 2. Information Classification and Organization using Neuro-Fuzzy Model Event Retrieval. Chapter 3. N-Gram Thesaurus Generation for Query Expansion and Refinement using Tag Term Weight for Information Retrieval -- Chapter 4. Smooth Weighted Color Histogram using Human Visual Perception for CBIR Applications -- Chapter 5. Indexing and Encoding Color Histogram with Bin Overlapped Similarity Measure for Image Retrieval -- Chapter 6. Summary and Conclusion.
520
$a
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book's overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
650
0
$a
Information retrieval.
$3
215224
650
0
$a
Content-based image retrieval.
$3
561577
650
1 4
$a
Information Storage and Retrieval.
$3
274190
650
2 4
$a
Multimedia Information Systems.
$3
274489
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Pattern Recognition.
$3
273706
700
1
$a
Vadivel, A.
$3
823065
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-2559-5
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000161944
電子館藏
1圖書
電子書
EB ZA3075 .S526 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-2559-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入