語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for medical image r...
~
(1998 :)
Machine learning for medical image reconstructionfirst International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for medical image reconstructionedited by Florian Knoll, Andreas Maier, Daniel Rueckert.
其他題名:
first International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /
其他題名:
MLMIR 2018
其他作者:
Knoll, Florian.
團體作者:
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
x, 158 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learningCongresses.
電子資源:
https://doi.org/10.1007/978-3-030-00129-2
ISBN:
9783030001292$q(electronic bk.)
Machine learning for medical image reconstructionfirst International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /
Machine learning for medical image reconstruction
first International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /[electronic resource] :MLMIR 2018edited by Florian Knoll, Andreas Maier, Daniel Rueckert. - Cham :Springer International Publishing :2018. - x, 158 p. :ill., digital ;24 cm. - Lecture notes in computer science,110740302-9743 ;. - Lecture notes in computer science ;4891..
Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction.
This book constitutes the refereed proceedings of the First International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 17 full papers presented were carefully reviewed and selected from 21 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography, and deep learning for general image reconstruction.
ISBN: 9783030001292$q(electronic bk.)
Standard No.: 10.1007/978-3-030-00129-2doiSubjects--Topical Terms:
384498
Machine learning
--Congresses.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Machine learning for medical image reconstructionfirst International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /
LDR
:01989nmm a2200385 a 4500
001
544522
003
DE-He213
005
20180913021628.0
006
m d
007
cr nn 008maaau
008
190508s2018 sz s 0 eng d
020
$a
9783030001292$q(electronic bk.)
020
$a
9783030001285$q(paper)
024
7
$a
10.1007/978-3-030-00129-2
$2
doi
035
$a
978-3-030-00129-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
072
7
$a
TJFM1
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M685 2018
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine learning for medical image reconstruction
$h
[electronic resource] :
$b
first International Workshop, MLMIR 2018, held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 : proceedings /
$c
edited by Florian Knoll, Andreas Maier, Daniel Rueckert.
246
3
$a
MLMIR 2018
246
3
$a
MICCAI 2018
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
x, 158 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11074
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
505
0
$a
Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction.
520
$a
This book constitutes the refereed proceedings of the First International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 17 full papers presented were carefully reviewed and selected from 21 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography, and deep learning for general image reconstruction.
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Artificial intelligence
$x
Medical applications
$v
Congresses.
$3
442992
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
445765
650
1 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Computer Communication Networks.
$3
218087
650
2 4
$a
Logic Design.
$3
276275
650
2 4
$a
Health Informatics.
$3
274212
700
1
$a
Knoll, Florian.
$3
823080
700
1
$a
Maier, Andreas.
$3
731453
700
1
$a
Rueckert, Daniel.
$3
823081
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-00129-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000161966
電子館藏
1圖書
電子書
EB Q325.5 .M685 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-00129-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入