語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Python for data mining quick syntax ...
~
Porcu, Valentina.
Python for data mining quick syntax reference
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Python for data mining quick syntax referenceby Valentina Porcu.
作者:
Porcu, Valentina.
出版者:
Berkeley, CA :Apress :2018.
面頁冊數:
xv, 260 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Python (Computer program language)
電子資源:
https://doi.org/10.1007/978-1-4842-4113-4
ISBN:
9781484241134$q(electronic bk.)
Python for data mining quick syntax reference
Porcu, Valentina.
Python for data mining quick syntax reference
[electronic resource] /by Valentina Porcu. - Berkeley, CA :Apress :2018. - xv, 260 p. :ill. (some col.), digital ;24 cm.
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
ISBN: 9781484241134$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-4113-4doiSubjects--Topical Terms:
215247
Python (Computer program language)
LC Class. No.: QA76.9.D343 / P673 2018
Dewey Class. No.: 006.312
Python for data mining quick syntax reference
LDR
:02139nmm a2200325 a 4500
001
546944
003
DE-He213
005
20190514113100.0
006
m d
007
cr nn 008maaau
008
190627s2018 cau s 0 eng d
020
$a
9781484241134$q(electronic bk.)
020
$a
9781484241127$q(paper)
024
7
$a
10.1007/978-1-4842-4113-4
$2
doi
035
$a
978-1-4842-4113-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
P673 2018
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
P834 2018
100
1
$a
Porcu, Valentina.
$3
826058
245
1 0
$a
Python for data mining quick syntax reference
$h
[electronic resource] /
$c
by Valentina Porcu.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2018.
300
$a
xv, 260 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Getting Started -- 2. Introductory Notions -- 3. Basic Objects and Structures -- 4. Functions -- 5. Conditional Instructions and Writing Functions -- 6. Other Basic Concepts -- 7. Importing Files -- 8. pandas -- 9. SciPy and NumPy -- 10. Matplotlib -- 11. scikit-learn.
520
$a
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them. The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
Data mining.
$3
184440
650
1 4
$a
Python.
$3
763308
650
2 4
$a
Big Data.
$3
760530
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4113-4
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000163311
電子館藏
1圖書
電子書
EB QA76.9.D343 P834 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-4113-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入