語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary algorithms and neural n...
~
Mirjalili, Seyedali.
Evolutionary algorithms and neural networkstheory and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Evolutionary algorithms and neural networksby Seyedali Mirjalili.
其他題名:
theory and applications /
作者:
Mirjalili, Seyedali.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xiv, 156 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science)
電子資源:
http://dx.doi.org/10.1007/978-3-319-93025-1
ISBN:
9783319930251$q(electronic bk.)
Evolutionary algorithms and neural networkstheory and applications /
Mirjalili, Seyedali.
Evolutionary algorithms and neural networks
theory and applications /[electronic resource] :by Seyedali Mirjalili. - Cham :Springer International Publishing :2019. - xiv, 156 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.7801860-949X ;. - Studies in computational intelligence ;v. 216..
Part I: Evolutionary algorithms -- Introduction to Evolutionary Single-objective Optimisation -- Particle Swarm Optimisation -- Ant Colony Optimization -- Genetic Algorithm -- Biogeography-Based Optimization -- Part II: Evolutionary Neural Networks -- Evolutionary Feedforward Neural Networks -- Evolutionary Multi-Layer Perceptron -- Evolutionary Radial Basis Function Networks -- Evolutionary Deep Neural Networks.
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
ISBN: 9783319930251$q(electronic bk.)
Standard No.: 10.1007/978-3-319-93025-1doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87 / .M575 2019
Dewey Class. No.: 006.32
Evolutionary algorithms and neural networkstheory and applications /
LDR
:02488nmm a2200325 a 4500
001
550365
003
DE-He213
005
20180626060844.0
006
m d
007
cr nn 008maaau
008
191004s2019 gw s 0 eng d
020
$a
9783319930251$q(electronic bk.)
020
$a
9783319930244$q(paper)
024
7
$a
10.1007/978-3-319-93025-1
$2
doi
035
$a
978-3-319-93025-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.M575 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.M675 2019
100
1
$a
Mirjalili, Seyedali.
$3
830154
245
1 0
$a
Evolutionary algorithms and neural networks
$h
[electronic resource] :
$b
theory and applications /
$c
by Seyedali Mirjalili.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiv, 156 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.780
505
0
$a
Part I: Evolutionary algorithms -- Introduction to Evolutionary Single-objective Optimisation -- Particle Swarm Optimisation -- Ant Colony Optimization -- Genetic Algorithm -- Biogeography-Based Optimization -- Part II: Evolutionary Neural Networks -- Evolutionary Feedforward Neural Networks -- Evolutionary Multi-Layer Perceptron -- Evolutionary Radial Basis Function Networks -- Evolutionary Deep Neural Networks.
520
$a
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
650
0
$a
Neural networks (Computer science)
$3
181982
650
0
$a
Evolutionary computation.
$3
231709
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
567118
650
2 4
$a
Simulation and Modeling.
$3
273719
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-93025-1
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000164433
電子館藏
1圖書
電子書
EB QA76.87 M675 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-93025-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入