語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applications of artificial intellige...
~
Azizi, Aydin.
Applications of artificial intelligence techniques in Industry 4.0
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applications of artificial intelligence techniques in Industry 4.0by Aydin Azizi.
作者:
Azizi, Aydin.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xii, 61 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Artificial intelligenceIndustrial applications.
電子資源:
https://doi.org/10.1007/978-981-13-2640-0
ISBN:
9789811326400$q(electronic bk.)
Applications of artificial intelligence techniques in Industry 4.0
Azizi, Aydin.
Applications of artificial intelligence techniques in Industry 4.0
[electronic resource] /by Aydin Azizi. - Singapore :Springer Singapore :2019. - xii, 61 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
Introduction -- Modern Manufacturing -- RFID Network Planning -- Hybrid Artificial Intelligence Optimization Technique -- Implementation.
This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks. This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN) The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility of the proposed architecture successfully.
ISBN: 9789811326400$q(electronic bk.)
Standard No.: 10.1007/978-981-13-2640-0doiSubjects--Topical Terms:
524554
Artificial intelligence
--Industrial applications.
LC Class. No.: TA347.A78 / A959 2019
Dewey Class. No.: 006.3
Applications of artificial intelligence techniques in Industry 4.0
LDR
:02319nmm a2200337 a 4500
001
552138
003
DE-He213
005
20190520172341.0
006
m d
007
cr nn 008maaau
008
191105s2019 si s 0 eng d
020
$a
9789811326400$q(electronic bk.)
020
$a
9789811326394$q(paper)
024
7
$a
10.1007/978-981-13-2640-0
$2
doi
035
$a
978-981-13-2640-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.A78
$b
A959 2019
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
TA347.A78
$b
A995 2019
100
1
$a
Azizi, Aydin.
$3
832636
245
1 0
$a
Applications of artificial intelligence techniques in Industry 4.0
$h
[electronic resource] /
$c
by Aydin Azizi.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xii, 61 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
Introduction -- Modern Manufacturing -- RFID Network Planning -- Hybrid Artificial Intelligence Optimization Technique -- Implementation.
520
$a
This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks. This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN) The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility of the proposed architecture successfully.
650
0
$a
Artificial intelligence
$x
Industrial applications.
$3
524554
650
1 4
$a
Communications Engineering, Networks.
$3
273745
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Engineering Economics, Organization, Logistics, Marketing.
$3
274009
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
https://doi.org/10.1007/978-981-13-2640-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000165316
電子館藏
1圖書
電子書
EB TA347.A78 A995 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-2640-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入