語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
MATLAB machine learning recipesa pro...
~
Paluszek, Michael.
MATLAB machine learning recipesa problem-solution approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
MATLAB machine learning recipesby Michael Paluszek, Stephanie Thomas.
其他題名:
a problem-solution approach /
作者:
Paluszek, Michael.
其他作者:
Thomas, Stephanie.
出版者:
Berkeley, CA :Apress :2019.
面頁冊數:
xix, 347 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-1-4842-3916-2
ISBN:
9781484239162$q(electronic bk.)
MATLAB machine learning recipesa problem-solution approach /
Paluszek, Michael.
MATLAB machine learning recipes
a problem-solution approach /[electronic resource] :by Michael Paluszek, Stephanie Thomas. - 2nd ed. - Berkeley, CA :Apress :2019. - xix, 347 p. :ill., digital ;24 cm.
1 Overview -- 2 Data Representation -- 3 MATLAB Graphics -- 4 Kalman Filters -- 5 Adaptive Control -- 6 Fuzzy Logic -- 7 Data Classification with Decision Trees -- 8 Simple Neural Nets -- 9 Classification with Neural Nets -- 10 Neural Nets with Deep Learning -- 11 Neural Aircraft Control -- 12 Multiple Hypothesis Testing -- 13 Autonomous Driving with MHT -- 14 Case-Based Expert Systems -- Appendix A: A Brief History of Autonomous Learning -- Appendix B: Software for Machine Learning.
Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data.
ISBN: 9781484239162$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-3916-2doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .P358 2019
Dewey Class. No.: 006.31
MATLAB machine learning recipesa problem-solution approach /
LDR
:02561nmm a2200337 a 4500
001
553012
003
DE-He213
005
20190813161326.0
006
m d
007
cr nn 008maaau
008
191107s2019 cau s 0 eng d
020
$a
9781484239162$q(electronic bk.)
020
$a
9781484239155$q(paper)
024
7
$a
10.1007/978-1-4842-3916-2
$2
doi
035
$a
978-1-4842-3916-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.P358 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.P184 2019
100
1
$a
Paluszek, Michael.
$3
732019
245
1 0
$a
MATLAB machine learning recipes
$h
[electronic resource] :
$b
a problem-solution approach /
$c
by Michael Paluszek, Stephanie Thomas.
250
$a
2nd ed.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xix, 347 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Overview -- 2 Data Representation -- 3 MATLAB Graphics -- 4 Kalman Filters -- 5 Adaptive Control -- 6 Fuzzy Logic -- 7 Data Classification with Decision Trees -- 8 Simple Neural Nets -- 9 Classification with Neural Nets -- 10 Neural Nets with Deep Learning -- 11 Neural Aircraft Control -- 12 Multiple Hypothesis Testing -- 13 Autonomous Driving with MHT -- 14 Case-Based Expert Systems -- Appendix A: A Brief History of Autonomous Learning -- Appendix B: Software for Machine Learning.
520
$a
Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. You will: Learn to write code for machine learning, adaptive control and estimation using MATLAB See how these three areas complement each other Understand why these three areas are needed for robust machine learning applications Use MATLAB graphics and visualization tools for machine learning Code real world examples in MATLAB for major applications of machine learning in big data.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Big Data.
$3
760530
700
1
$a
Thomas, Stephanie.
$3
210618
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-3916-2
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000166160
電子館藏
1圖書
電子書
EB Q325.5 P184 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-3916-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入