語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical text analyticsmaximizing t...
~
Anandarajan, Murugan.
Practical text analyticsmaximizing the value of text data /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Practical text analyticsby Murugan Anandarajan, Chelsey Hill, Thomas Nolan.
其他題名:
maximizing the value of text data /
作者:
Anandarajan, Murugan.
其他作者:
Hill, Chelsey.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xxviii, 285 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data mining.
電子資源:
https://doi.org/10.1007/978-3-319-95663-3
ISBN:
9783319956633$q(electronic bk.)
Practical text analyticsmaximizing the value of text data /
Anandarajan, Murugan.
Practical text analytics
maximizing the value of text data /[electronic resource] :by Murugan Anandarajan, Chelsey Hill, Thomas Nolan. - Cham :Springer International Publishing :2019. - xxviii, 285 p. :ill., digital ;24 cm. - Advances in analytics and data science,v.22522-0233 ;. - Advances in analytics and data science ;v.1..
Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics.
This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.
ISBN: 9783319956633$q(electronic bk.)
Standard No.: 10.1007/978-3-319-95663-3doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Practical text analyticsmaximizing the value of text data /
LDR
:03071nmm a2200337 a 4500
001
553102
003
DE-He213
005
20190528131440.0
006
m d
007
cr nn 008maaau
008
191111s2019 gw s 0 eng d
020
$a
9783319956633$q(electronic bk.)
020
$a
9783319956626$q(paper)
024
7
$a
10.1007/978-3-319-95663-3
$2
doi
035
$a
978-3-319-95663-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS070030
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
A533 2019
100
1
$a
Anandarajan, Murugan.
$3
484634
245
1 0
$a
Practical text analytics
$h
[electronic resource] :
$b
maximizing the value of text data /
$c
by Murugan Anandarajan, Chelsey Hill, Thomas Nolan.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxviii, 285 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in analytics and data science,
$x
2522-0233 ;
$v
v.2
505
0
$a
Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics.
520
$a
This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.
650
0
$a
Data mining.
$3
184440
650
0
$a
Text processing (Computer science)
$3
210527
650
0
$a
Text files.
$3
242709
650
0
$a
Big data.
$3
609582
650
1 4
$a
Big Data/Analytics.
$3
742047
650
2 4
$a
Business Information Systems.
$3
274346
650
2 4
$a
Statistics for Business/Economics/Mathematical Finance/Insurance.
$3
274062
700
1
$a
Hill, Chelsey.
$3
834179
700
1
$a
Nolan, Thomas.
$3
834180
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Advances in analytics and data science ;
$v
v.1.
$3
832448
856
4 0
$u
https://doi.org/10.1007/978-3-319-95663-3
950
$a
Business and Management (Springer-41169)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000166218
電子館藏
1圖書
電子書
EB QA76.9.D343 A533 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-319-95663-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入